Skip to main content

Advertisement

Log in

Zinc signal: a new player in osteobiology

  • Perspective
  • Published:
Journal of Bone and Mineral Metabolism Aims and scope Submit manuscript

Abstract

Disturbed zinc (Zn) homeostasis in mammals is mainly characterized by impaired bone generation accompanied with growth retardation. However, the underlying mechanisms that determine how Zn controls bone homeostasis remain to be defined. Zn homeostasis is tightly controlled by Zn transporter families. Recent studies have shown that Zn transporter-mediated Zn ion (Zn2+) behaves as a signaling factor, called Zn signal, that exerts a multiple function in cellular events, showing why Zn has a vital effect on mammalian bone growth and regeneration. This perspective put importance on the principal mechanisms of Zn participation in mammalian bone homeostasis, shifting our focus on the role of Zn from simply a nutrient to a signaling molecule that fine-tunes intracellular signaling events.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

ZIP:

Zrt/Irt-like protein

ZnT:

Zn transporter

Zn2+ :

Zn ion

GPCR:

G protein-coupled receptor

BMP:

Bone morphogenetic protein

TGF-β:

Transforming growth factor-beta

KO:

Knockout

STAT:

Signal transducer and activator for transcription

JAK:

Janus kinase

AE:

Acrodermatitis enteropathica

EDS:

Ehlers–Danlos syndrome

SD-EDS:

Spondylodysplastic EDS

cAMP:

Cyclic adenosine monophosphate

PDE:

Phosphodiesterase

GH:

Growth hormone

IGF-I:

Insulin-like growth factor

GHRH:

Growth hormone-releasing hormone

GHRHR:

Growth hormone-releasing hormone receptor

PTHrP:

Parathyroid hormone-related peptide

PTH1R:

Parathyroid hormone 1 receptor

SMAD:

Contraction of Sma and Mad (mothers against decapentaplegic)

References

  1. Prasad AS (1995) Zinc: an overview. Nutrition 11:93–99

    PubMed  CAS  Google Scholar 

  2. Prasad AS, Halsted JA, Nadimi M (1961) Syndrome of iron deficiency anemia, hepatosplenomegaly, hypogonadism, dwarfism and geophagia. Am J Med 31:532–546

    Article  PubMed  CAS  Google Scholar 

  3. Bergman B, Soremark R (1968) Autoradiographic studies on the distribution of zinc-65 in mice. J Nutr 94:6–12

    PubMed  CAS  Google Scholar 

  4. Yamaguchi M, Gao YH (1998) Potent effect of zinc acexamate on bone components in the femoral-metaphyseal tissues of elderly female rats. Gen Pharmacol 30:423–427

    Article  PubMed  CAS  Google Scholar 

  5. Hirano T, Murakami M, Fukada T, Nishida K, Yamasaki S et al (2008) Roles of zinc and zinc signaling in immunity: zinc as an intracellular signaling molecule. Adv Immunol 97:149–176

    Article  PubMed  CAS  Google Scholar 

  6. Maret W (2011) Metals on the move: zinc ions in cellular regulation and in the coordination dynamics of zinc proteins. Biometals 24:411–418

    Article  PubMed  CAS  Google Scholar 

  7. Fukada T, Yamasaki S, Nishida K, Murakami M, Hirano T (2011) Zinc homeostasis and signaling in health and diseases: zinc signaling. J Biol Inorg Chem 16:1123–1134

    Article  PubMed  CAS  Google Scholar 

  8. Haase H, Maret W (2003) Intracellular zinc fluctuations modulate protein tyrosine phosphatase activity in insulin/insulin-like growth factor-1 signaling. Exp Cell Res 291:289–298

    Article  PubMed  CAS  Google Scholar 

  9. Nishida K, Hasegawa A, Nakae S, Oboki K, Saito H et al (2009) Zinc transporter Znt5/Slc30a5 is required for the mast cell-mediated delayed-type allergic reaction but not the immediate-type reaction. J Exp Med 206:1351–1364

    Article  PubMed  CAS  Google Scholar 

  10. Yamashita S, Miyagi C, Fukada T, Kagara N, Che YS et al (2004) Zinc transporter LIVI controls epithelial-mesenchymal transition in zebrafish gastrula organizer. Nature (Lond) 429:298–302

    Article  CAS  Google Scholar 

  11. Kitabayashi C, Fukada T, Kanamoto M, Ohashi W, Hojyo S et al (2010) Zinc suppresses Th17 development via inhibition of STAT3 activation. Int Immunol 22:375–386

    Article  PubMed  CAS  Google Scholar 

  12. Nilsson O, Marino R, De Luca F, Phillip M, Baron J (2005) Endocrine regulation of the growth plate. Horm Res 64:157–165

    Article  PubMed  CAS  Google Scholar 

  13. Procter AM, Phillips JA 3rd, Cooper DN (1998) The molecular genetics of growth hormone deficiency. Hum Genet 103:255–272

    Article  PubMed  CAS  Google Scholar 

  14. MacDonald RS (2000) The role of zinc in growth and cell proliferation. J Nutr 130:1500S–1508S

    PubMed  CAS  Google Scholar 

  15. Kronenberg HM (2003) Developmental regulation of the growth plate. Nature (Lond) 423:332–336

    Article  CAS  Google Scholar 

  16. Rossi L, Migliaccio S, Corsi A, Marzia M, Bianco P et al (2001) Reduced growth and skeletal changes in zinc-deficient growing rats are due to impaired growth plate activity and inanition. J Nutr 131:1142–1146

    PubMed  CAS  Google Scholar 

  17. Michaelsson G, Ljunghall K, Danielson BG (1980) Zinc in epidermis and dermis in healthy subjects. Acta Dermato-Venereol 60:295–299

    CAS  Google Scholar 

  18. Molokhia MM, Portnoy B (1969) Neutron activation analysis of trace elements in skin. 3. Zinc in normal skin. Br J Dermatol 81:759–762

    Article  PubMed  CAS  Google Scholar 

  19. Cobourne MT, Sharpe PT (2003) Tooth and jaw: molecular mechanisms of patterning in the first branchial arch. Arch Oral Biol 48:1–14

    Article  PubMed  CAS  Google Scholar 

  20. Cao X, Chen D (2005) The BMP signaling and in vivo bone formation. Gene (Amst) 357:1–8

    Article  CAS  Google Scholar 

  21. Akhurst RJ (2004) TGF beta signaling in health and disease. Nat Genet 36:790–792

    Article  PubMed  CAS  Google Scholar 

  22. Mizuguchi T, Collod-Beroud G, Akiyama T, Abifadel M, Harada N et al (2004) Heterozygous TGFBR2 mutations in Marfan syndrome. Nat Genet 36:855–860

    Article  PubMed  CAS  Google Scholar 

  23. Gaither LA, Eide DJ (2001) Eukaryotic zinc transporters and their regulation. Biometals 14:251–270

    Article  PubMed  CAS  Google Scholar 

  24. Kambe T, Yamaguchi-Iwai Y, Sasaki R, Nagao M (2004) Overview of mammalian zinc transporters. Cell Mol Life Sci 61:49–68

    Article  PubMed  CAS  Google Scholar 

  25. Fukada T, Kambe T (2011) Molecular and genetic features of zinc transporters in physiology and pathogenesis. Metallomics 3:662–674

    Article  PubMed  CAS  Google Scholar 

  26. Kambe T (2011) An overview of a wide range of functions of ZnT and Zip zinc transporters in the secretory pathway. Biosci Biotechnol Biochem 75:1036–1043

    Article  PubMed  CAS  Google Scholar 

  27. Kambe T, Weaver BP, Andrews GK (2008) The genetics of essential metal homeostasis during development. Genesis 46:214–228

    Article  PubMed  CAS  Google Scholar 

  28. Huang L, Gitschier J (1997) A novel gene involved in zinc transport is deficient in the lethal milk mouse. Nat Genet 17:292–297

    Article  PubMed  CAS  Google Scholar 

  29. Chowanadisai W, Lonnerdal B, Kelleher SL (2006) Identification of a mutation in SLC30A2 (ZnT-2) in women with low milk zinc concentration that results in transient neonatal zinc deficiency. J Biol Chem 281:39699–39707

    Article  PubMed  CAS  Google Scholar 

  30. Wang X, Zhou B (2010) Dietary zinc absorption: a play of Zips and ZnTs in the gut. IUBMB Life 62:176–182

    Article  PubMed  CAS  Google Scholar 

  31. Wang K, Zhou B, Kuo YM, Zemansky J, Gitschier J (2002) A novel member of a zinc transporter family is defective in acrodermatitis enteropathica. Am J Hum Genet 71:66–73

    Article  PubMed  CAS  Google Scholar 

  32. Kury S, Dreno B, Bezieau S, Giraudet S, Kharfi M et al (2002) Identification of SLC39A4, a gene involved in acrodermatitis enteropathica. Nat Genet 31:239–240

    Article  PubMed  Google Scholar 

  33. Dufner-Beattie J, Weaver BP, Geiser J, Bilgen M, Larson M et al (2007) The mouse acrodermatitis enteropathica gene Slc39a4 (Zip4) is essential for early development and heterozygosity causes hypersensitivity to zinc deficiency. Hum Mol Genet 16:1391–1399

    Article  PubMed  CAS  Google Scholar 

  34. Wang F, Kim BE, Petris MJ, Eide DJ (2004) The mammalian Zip5 protein is a zinc transporter that localizes to the basolateral surface of polarized cells. J Biol Chem 279:51433–51441

    Article  PubMed  CAS  Google Scholar 

  35. Huang ZL, Dufner-Beattie J, Andrews GK (2006) Expression and regulation of SLC39A family zinc transporters in the developing mouse intestine. Dev Biol 295:571–579

    Article  PubMed  CAS  Google Scholar 

  36. Dufner-Beattie J, Kuo YM, Gitschier J, Andrews GK (2004) The adaptive response to dietary zinc in mice involves the differential cellular localization and zinc regulation of the zinc transporters ZIP4 and ZIP5. J Biol Chem 279:49082–49090

    Article  PubMed  CAS  Google Scholar 

  37. Wang X, Wu Y, Zhou B (2009) Dietary zinc absorption is mediated by ZnT1 in Drosophila melanogaster. FASEB J 23:2650–2661

    Article  PubMed  CAS  Google Scholar 

  38. Hojyo S, Fukada T, Shimoda S, Ohashi W, Bin BH et al (2011) The zinc transporter SLC39A14/ZIP14 controls G-protein coupled receptor-mediated signaling required for systemic growth. PLoS ONE 6:e18059

    Article  PubMed  CAS  Google Scholar 

  39. Kronenberg HM (2006) PTHrP and skeletal development. Ann N Y Acad Sci 1068:1–13

    Article  PubMed  CAS  Google Scholar 

  40. Ohlsson C, Bengtsson BA, Isaksson OG, Andreassen TT, Slootweg MC (1998) Growth hormone and bone. Endocr Rev 19:55–79

    Article  PubMed  CAS  Google Scholar 

  41. Bin BH, Fukada T, Hosaka T, Yamasaki S, Ohashi W et al (2011) Biochemical characterization of human ZIP13 protein: a homo-dimerized zinc transporter involved in the spondylocheiro dysplastic Ehlers–Danlos syndrome. J Biol Chem 286:40255–40265

    Article  PubMed  CAS  Google Scholar 

  42. Fukada T, Civic N, Furuichi T, Shimoda S, Mishima K et al (2008) The zinc transporter SLC39A13/ZIP13 is required for connective tissue development; its involvement in BMP/TGF-beta signaling pathways. PLoS One 3:e3642

    Article  PubMed  Google Scholar 

  43. Fukada T, Asada Y, Mishima K, Shimoda S, Saito I (2011) Slc39a13/Zip13: a crucial zinc transporter involved in tooth development and inherited disorders. J Oral Biosci 53:1–12

    Article  CAS  Google Scholar 

  44. Steinmann B, Royce PM (eds) (2002) Connective tissue and its heritable disorders, 2nd edn. Wiley-Liss, New York

    Google Scholar 

  45. Steinmann B, Royce PM, Superti-Furga A (2002) The Ehlers–Danlos syndrome. In: Steinmann B, Royce PM (eds) Connective tissue and its heritable disorders, 2nd edn. Wiley-Liss, New York, pp 431–524

    Chapter  Google Scholar 

  46. Rauch F, Glorieux FH (2004) Osteogenesis imperfecta. Lancet 363:1377–1385

    Article  PubMed  CAS  Google Scholar 

  47. Warman ML, Cormier-Daire V, Hall C, Krakow D, Lachman R et al (2011) Nosology and classification of genetic skeletal disorders: 2010 revision. Am J Med Genet A 155A:943–968

    PubMed  Google Scholar 

  48. Giunta C, Elcioglu NH, Albrecht B, Eich G, Chambaz C et al (2008) Spondylocheiro dysplastic form of the Ehlers–Danlos syndrome–an autosomal-recessive entity caused by mutations in the zinc transporter gene SLC39A13. Am J Hum Genet 82:1290–1305

    Article  PubMed  CAS  Google Scholar 

  49. Inoue K, Matsuda K, Itoh M, Kawaguchi H, Tomoike H et al (2002) Osteopenia and male-specific sudden cardiac death in mice lacking a zinc transporter gene, Znt5. Hum Mol Genet 11:1775–1784

    Article  PubMed  CAS  Google Scholar 

  50. Hambidge KM, Krebs NF (2007) Zinc deficiency: a special challenge. J Nutr 137:1101–1105

    PubMed  CAS  Google Scholar 

  51. Hambidge M (2000) Human zinc deficiency. J Nutr 130:1344S–1349S

    PubMed  CAS  Google Scholar 

  52. Yamasaki S, Hasegawa A, Hojyo S, Ohashi W, Fukada T et al (2012) A novel role of the L-type calcium channel alpha1D subunit as a gatekeeper for intracellular zinc signaling: zinc wave. PLOS ONE 7:e39654

    Article  PubMed  CAS  Google Scholar 

  53. Soysa NS, Alles N (2009) NF-kappaB functions in osteoclasts. Biochem Biophys Res Commun 378:1–5

    Article  PubMed  CAS  Google Scholar 

  54. Weaver BP, Dufner-Beattie J, Kambe T, Andrews GK (2007) Novel zinc-responsive post-transcriptional mechanisms reciprocally regulate expression of the mouse Slc39a4 and Slc39a5 zinc transporters (Zip4 and Zip5). Biol Chem 388:1301–1312

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Toshio Hirano, Mr. Masami Kawamura, Ms. Ayumi Ito, Ms. Mayumi Hara, and Ms. Reiko Kimura for their sincere support and contributions. I also thank Dr. Andrea Superti-Furga for the use of the human case images. This work was supported by grants from the Ministry of Education, Culture, Sports, Science and Technology of Japan, The Foundation of Growth Science (Fukada), The Kanagawa Nanbyo Study Foundation (Fukada), The Naito Foundation (Fukada), and The Takeda Science Foundation (Furuichi).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshiyuki Fukada.

About this article

Cite this article

Fukada, T., Hojyo, S. & Furuichi, T. Zinc signal: a new player in osteobiology. J Bone Miner Metab 31, 129–135 (2013). https://doi.org/10.1007/s00774-012-0409-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00774-012-0409-6

Keywords

Navigation