Skip to main content

Advertisement

Log in

Mean platelet volume is negatively associated with bone mineral density in postmenopausal women

  • Original article
  • Published:
Journal of Bone and Mineral Metabolism Aims and scope Submit manuscript

Abstract

Osteoporosis (OP) has been associated with cardiovascular disease. More specifically, osteoporosis was found to be an independent predictor of cardiovascular mortality. Recent studies revealed that platelets play a critical role in bone remodeling. Mean platelet volume (MPV) is an early marker of platelet activation, which is involved in the pathophysiology of coronary heart disease. However, little research has been conducted to investigate the relationship between MPV and OP. In this cross-sectional study, we investigated the relationship between platelet count, MPV, and bone mineral density (BMD) in 410 subjects in the geriatric department of the Second Affiliated Hospital, Harbin, China. Different biochemical parameters, platelet count, and MPV were determined, and bone mineral density (BMD) (g/cm2) was measured in the osteoporosis, osteopenia, and normal BMD groups. Mean age, systolic blood pressure (SBP), total cholesterol (TC), triglyceride (TG), low density lipoprotein cholesterol (LDL-C), fasting plasma glucose (FPG), and MPV increased gradually, and body mass index (BMI), decreased as BMD decreased. A negative correlation was present between MPV and the lumbar spine (L2–L4) and femoral neck BMD after adjusting other risk factors. Univariate analysis and multivariate analysis showed that MPV was significantly associated with lumbar spine L2–L4 BMD and femoral neck BMD (β = −0.285, P < 0.001 for lumbar spine L2–L4 BMD; β = −0.207, P < 0.001 for femoral neck BMD in multivariate model). The findings show that MPV is negatively correlated with BMD. Further studies on the involvement of MPV in osteoporosis may contribute to the evaluation of thrombotic risk in elderly patients with osteoporosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Shaffer JR, Kammerer CM, Rainwater DL, O’Leary DH, Bruder JM, Bauer RL, Mitchell BD (2007) Decreased bone mineral density is correlated with increased subclinical atherosclerosis in older, but not younger, Mexican American women and men: the San Antonio Family Osteoporosis Study. Calcif Tissue Int 81:430–441

    Article  PubMed  CAS  Google Scholar 

  2. van der Klift M, Pols HA, Hak AE, Witteman JC, Hofman A, de Laet CE (2002) Bone mineral density and the risk of peripheral arterial disease: the Rotterdam Study. Calcif Tissue Int 70:443–449

    Google Scholar 

  3. Jorgensen L, Engstad T, Jacobsen BK (2001) Bone mineral density in acute stroke patients: low bone mineral density may predict first stroke in women. Stroke 32:47–51

    Article  PubMed  CAS  Google Scholar 

  4. Kado DM, Browner WS, Blackwell T, Gore R, Cummings SR (2000) Rate of bone loss is associated with mortality in older women: a prospective study. J Bone Miner Res 15:1974–1980

    Article  PubMed  CAS  Google Scholar 

  5. Marcovitz PA, Tran HH, Franklin BA, O’Neill WW, Yerkey M, Boura J, Kleerekoper M, Dickinson CZ (2005) Usefulness of bone mineral density to predict significant coronary artery disease. Am J Cardiol 96:1059–1063

    Article  PubMed  Google Scholar 

  6. Linden MD, Jackson DE (2010) Platelets: pleiotropic roles in atherogenesis and atherothrombosis. Int J Biochem Cell Biol 42:1762–1766

    Article  PubMed  CAS  Google Scholar 

  7. Gasparyan AY, Ayvazyan L, Mikhailidis DP, Kitas GD (2011) Mean platelet volume: a link between thrombosis and inflammation. Curr Pharm Des 17:47–58

    Article  PubMed  CAS  Google Scholar 

  8. Coban E, Ozdogan M, Yazicioglu G, Akcit F (2005) The mean platelet volume in patients with obesity. Int J Clin Pract 59:981–982

    Article  PubMed  CAS  Google Scholar 

  9. Pathansali R, Smith N, Bath P (2001) Altered megakaryocyte-platelet haemostatic axis in hypercholesterolaemia. Platelets 12:292–297

    Article  PubMed  CAS  Google Scholar 

  10. Papanas N, Symeonidis G, Maltezos E, Mavridis G, Karavageli E, Vosnakidis T, Lakasas G (2004) Mean platelet volume in patients with type 2 diabetes mellitus. Platelets 15:475–478

    Article  PubMed  CAS  Google Scholar 

  11. Chu SG, Becker RC, Berger PB, Bhatt DL, Eikelboom JW, Konkle B, Mohler ER, Reilly MP, Berger JS (2010) Mean platelet volume as a predictor of cardiovascular risk: a systematic review and meta-analysis. J Thromb Haemost 8:148–156

    Article  PubMed  CAS  Google Scholar 

  12. Berger JS, Eraso LH, Xie D, Sha D, Mohler ER 3rd (2010) Mean platelet volume and prevalence of peripheral artery disease, the National Health and Nutrition Examination Survey, 1999–2004. Atherosclerosis 213:586–591

    Google Scholar 

  13. Muscari A, Puddu GM, Cenni A, Silvestri MG, Giuzio R, Rosati M, Santoro N, Bianchi G, Magalotti D, Zoli M (2009) Mean platelet volume (MPV) increase during acute non-lacunar ischemic strokes. Thromb Res 123:587–591

    Article  PubMed  CAS  Google Scholar 

  14. Crandall CJ, Miller-Martinez D, Greendale GA, Binkley N, Seeman TE, Karlamangla AS (2012) Socioeconomic status, race, and bone turnover in the Midlife in the US Study. Osteoporos Int 23(5):1503–1512

    Google Scholar 

  15. von der Recke P, Hansen MA, Hassager C (1999) The association between low bone mass at the menopause and cardiovascular mortality. Am J Med 106:273–278

    Google Scholar 

  16. Anagnostis P, Karagiannis A, Kakafika AI, Tziomalos K, Athyros VG, Mikhailidis DP (2009) Atherosclerosis and osteoporosis: age-dependent degenerative processes or related entities. Osteoporos Int 20:197–207

    Article  PubMed  CAS  Google Scholar 

  17. Gawaz M, Langer H, May AE (2005) Platelets in inflammation and atherogenesis. J Clin Invest 115:3378–3384

    Article  PubMed  CAS  Google Scholar 

  18. Sharif PS, Abdollahi M (2010) The role of platelets in bone remodeling. Inflamm Allergy Drug Targets 9:393–399

    Article  PubMed  CAS  Google Scholar 

  19. Clowes JA, Riggs BL, Khosla S (2005) The role of the immune system in the pathophysiology of osteoporosis. Immunol Rev 208:207–227

    Article  PubMed  CAS  Google Scholar 

  20. D’Amelio P, Isaia G, Isaia GC (2009) The osteoprotegerin/RANK/RANKL system: a bone key to vascular disease. J Endocrinol Invest 32:6–9

    PubMed  Google Scholar 

  21. Maitz P, Kandler B, Fischer MB, Watzek G, Gruber R (2006) Activated platelets retain their potential to induce osteoclast-like cell formation in murine bone marrow cultures. Platelets 17:477–483

    Article  PubMed  CAS  Google Scholar 

  22. Li X, Okada Y, Pilbeam CC, Lorenzo JA, Kennedy CR, Breyer RM, Raisz LG (2000) Knockout of the murine prostaglandin EP2 receptor impairs osteoclastogenesis in vitro. Endocrinology 141:2054–2061

    Article  PubMed  CAS  Google Scholar 

  23. Collin-Osdoby P (2004) Regulation of vascular calcification by osteoclast regulatory factors RANKL and osteoprotegerin. Circ Res 95:1046–1057

    Article  PubMed  CAS  Google Scholar 

  24. Lim HS, Blann AD, Lip GY (2004) Soluble CD40 ligand, soluble P-selectin, interleukin-6, and tissue factor in diabetes mellitus: relationships to cardiovascular disease and risk factor intervention. Circulation 109:2524–2528

    Article  PubMed  CAS  Google Scholar 

  25. O’Gradaigh D, Debiram I, Love S, Richards HK, Compston JE (2003) A prospective study of discordance in diagnosis of osteoporosis using spine and proximal femur bone densitometry. Osteoporos Int 14:13–18

    Article  PubMed  Google Scholar 

  26. Douchi T, Yamamoto S, Oki T, Maruta K, Kuwahata R, Nagata Y (2000) Relationship between body fat distribution and bone mineral density in premenopausal Japanese women. Obstet Gynecol 95:722–725

    Article  PubMed  CAS  Google Scholar 

  27. Warming L, Ravn P, Christiansen C (2003) Visceral fat is more important than peripheral fat for endometrial thickness and bone mass in healthy postmenopausal women. Am J Obstet Gynecol 188:349–353

    Article  PubMed  Google Scholar 

  28. Yamaguchi T, Yamamoto M, Kanazawa I, Yamauchi M, Yano S, Tanaka N, Nitta E, Fukuma A, Uno S, Sho-no T, Sugimoto T (2011) Quantitative ultrasound and vertebral fractures in patients with type 2 diabetes. J Bone Miner Metab 29:626–632

    Article  PubMed  Google Scholar 

  29. Yamamoto M, Yamaguchi T, Yamauchi M, Kaji H, Sugimoto T (2009) Diabetic patients have an increased risk of vertebral fractures independent of BMD or diabetic complications. J Bone Miner Res 24:702–709

    Article  PubMed  CAS  Google Scholar 

  30. Vestergaard P (2007) Discrepancies in bone mineral density and fracture risk in patients with type 1 and type 2 diabetes—a meta-analysis. Osteoporos Int 18:427–444

    Article  PubMed  CAS  Google Scholar 

  31. Ishii S, Nagase T, Shimizu T (2002) Platelet-activating factor receptor. Prostaglandins Other Lipid Mediat 68–69:599–609

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Philip T.T. Ly for critical reading of the manuscript before submission.

Conflict of interest

All other authors have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui-tao Wang.

About this article

Cite this article

Li, Xs., Zhang, Jr., Meng, Sy. et al. Mean platelet volume is negatively associated with bone mineral density in postmenopausal women. J Bone Miner Metab 30, 660–665 (2012). https://doi.org/10.1007/s00774-012-0362-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00774-012-0362-4

Keywords

Navigation