Skip to main content

Advertisement

Log in

Dietary quercetin inhibits bone loss without effect on the uterus in ovariectomized mice

  • Original Article
  • Published:
Journal of Bone and Mineral Metabolism Aims and scope Submit manuscript

Abstract

Quercetin is a major dietary flavonoid found in onions and other vegetables, and potentially has beneficial effects on disease prevention. In the present study, we demonstrate for the first time the effects of dietary quercetin on bone loss and uterine weight loss by ovariectomy in vivo. Female mice were ovariectomized (OVX) and were randomly allocated to 3 groups: a control diet or a diet with 0.25% (LQ) or 2.5% quercetin (HQ). After 4 weeks, dietary quercetin had no effects on uterine weight in OVX mice, but bone mineral density of the lumbar spine L4 and femur measured by peripheral quantitative computed tomography (pQCT) was higher in both the sham and the HQ groups than in the OVX group. Histomorphometric analysis showed that the HQ group restored bone volume (BV/TV) completely in distal femoral cancellous bone, but did not reduce the osteoclast surface area and osteoclast number when compared with the OVX group. In in-vitro experiments using mouse monocyte/macrophage cell line RAW264.7 cells, however, quercetin and its conjugate, quercetin-3-O-beta-d-glucuronide dose-dependently inhibited the receptor activator of nuclear factor-kappa B ligand (RANKL)-induced osteoclast differentiation, and the RANKL-stimulated expression of osteoclast related genes was also inhibited by quercetin. The luciferase reporter assay showed that quercetin did not appear to have estrogenic activity through estrogen receptors. These results suggest that dietary quercetin inhibits bone loss without effect on the uterus in OVX mice and does not act as a potent inhibitor of osteoclastogenesis or as a selective estrogen receptor modulator in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Horowitz MC, Xi Y, Wilson K, Kacena MA (2001) Control of osteoclastogenesis and bone resorption by members of the TNF family of receptors and ligands. Cytokine Growth Factor Rev 12:9–18

    Article  CAS  PubMed  Google Scholar 

  2. Gallagher JC (1996) Estrogen: prevention and treatment of osteoporosis. In: Marcus R, Feldman D, Kelsey J (eds) Osteoporosis. San Diego, CA, pp 1191–1208

    Google Scholar 

  3. Melton LJ (1995) Epidemiology of fractures. In: Riggs BL, Melton LJ (eds) Osteoporosis: etiology, diagnosis and management. Lippincott-Raven, Philadelphia, pp 225–248

    Google Scholar 

  4. Lindsay R, Hart DM, Aitken JM, MacDonald EB, Anderson KB, Clarke AC (1976) Long-term prevention of postmenopausal osteoporosis by estrogen. Lancet 1:1038–1041

    Article  CAS  PubMed  Google Scholar 

  5. Quigley ME, Martin PL, Burnier AM, Brooks P (1987) Estrogen therapy arrests bone loss in elderly women. Am J Obstet Gynecol 156:1516–1523

    CAS  PubMed  Google Scholar 

  6. Weiss NS, Ure CL, Ballard JH, Williams AR, Daling JR (1980) Decreased risk of fractures of the hip and lower forearm with postmenopausal use of estrogen. N Engl J Med 303:1195–1198

    CAS  PubMed  Google Scholar 

  7. Hutchinson TA, Polansky SM, Feinstein AR (1979) Postmenopausal oestrogens protect against fractures of hip and distal radius. Lancet 2:705–709

    Article  CAS  PubMed  Google Scholar 

  8. Ettinger B, Genant HK, Cann CE (1985) Long-term estrogen replacement therapy prevents bone loss and fractures. Ann Intern Med 102:319–324

    CAS  PubMed  Google Scholar 

  9. Henderson BE (1989) The cancer question: an overview of recent epidemiologic and retrospective data. Am J Obstet Gynecol 161:1859–1864

    CAS  PubMed  Google Scholar 

  10. Key TJA, Pike MC (1988) The role of oestrogens and progestagens in the epidemiology and prevention of breast cancer. Eur J Cancer 24:29–43

    Article  CAS  Google Scholar 

  11. Steinberg KK, Thacker SB, Smith SJ, Stroup DE, Zack MM, Flanders WD, Berkelman RL (1991) A meta-analysis of the effect of estrogen replacement therapy on the risk of breast cancer. JAMA 265:1985–1990

    Article  CAS  PubMed  Google Scholar 

  12. New SA, Robins SP, Campbell MK, Martin JC, Garton MJ, Bolton-Smith C, Grubb DA, Lee SJ, Reid DM (2000) Dietary influences on bone mass and bone metabolism: further evidence of a positive link between fruit and vegetable consumption and bone health? Am J Clin Nutr 71:142–151

    CAS  PubMed  Google Scholar 

  13. Muhlbauer RC, Lozano A, Reinli A (2002) Onion and a mixture of vegetables, salads, and herbs affect bone resorption in the rat by a mechanism independent of their base excess. J Bone Miner Res 17:1230–1235

    Article  CAS  PubMed  Google Scholar 

  14. Ishimi Y, Arai N, Wang X, Wu J, Umegaki K, Miyaura C, Takeda K, Ikegami S (2000) Difference in effective dosage of genistein on bone and uterus in ovariectomized mice. Biochem Biophys Res Commun 274:697–701

    Article  CAS  PubMed  Google Scholar 

  15. Nagata C, Takatsuka N, Inaba S, Kawakami N, Shimizu H (1998) Effect of soymilk consumption on serum estrogen concentrations in premenopausal Japanese women. J Natl Cancer Inst 90:1830–1835

    Article  CAS  PubMed  Google Scholar 

  16. Marini H, Minutoli L, Polito F, Bitto A, Altavilla D, Atteritano M, Gaudio A, Mazzaferro S, Frisina A, Frisina N, Lubrano C, Bonaiuto M, D’Anna R, Cannata ML, Corrado F, Adamo EB, Wilson S, Squadrito F (2007) Effects of the phytoestrogen genistein on bone metabolism in osteopenic postmenopausal women: a randomized trial. Ann Intern Med 146:839–847

    PubMed  Google Scholar 

  17. Paganga G, Miller N, Rice-Evans CA (1999) The polyphenolic content of fruit and vegetables and their antioxidant activities. What does a serving constitute? Free Radic Res 30:153–162

    Article  CAS  PubMed  Google Scholar 

  18. Murota K, Mitsukuni Y, Ichikawa M, Tsushida T, Miyamoto S, Terao J (2004) Quercetin-4′-glucoside is more potent than quercetin-3-glucoside in protection of rat intestinal mucosa homogenates against iron ion-induced lipid peroxidation. J Agric Food Chem 52:1907–1912

    Article  CAS  PubMed  Google Scholar 

  19. Kuo PC, Liu HF, Chao JI (2004) Survivin and p53 modulate quercetin-induced cell growth inhibition and apoptosis in human lung carcinoma cells. J Biol Chem 279:55875–55885

    Article  CAS  PubMed  Google Scholar 

  20. Knekt P, Kumpulainen J, Jarvinen R, Rissanen H, Heliovaara M, Reunanen A, Hakulinen T, Aromaa A (2002) Flavonoid intake and risk of chronic diseases. Am J Clin Nutr 76:560–568

    CAS  PubMed  Google Scholar 

  21. Ioku K, Tsushida T, Takei Y, Nakatani N, Terao J (1995) Antioxidative activity of quercetin and quercetin monoglucosides in solution and phospholipid bilayers. Biochim Biophys Acta 1234:99–104

    Article  PubMed  Google Scholar 

  22. Mühlbauer RC, Li Feng (1999) Effect of vegetables on bone metabolism. Nature 401:343–344

    Article  PubMed  Google Scholar 

  23. Horcajada-Molteni MN, Crespy V, Coxam V, Davicco MJ, Remesy C, Barlet JP (2000) Rutin inhibits ovariectomy-induced osteopenia in rats. J Bone Miner Res 15:2251–2258

    Article  CAS  PubMed  Google Scholar 

  24. Rassi CM, Lieberherr M, Chaumaz G, Pointillart A, Cournot G (2005) Modulation of osteoclastogenesis in porcine bone marrow cultures by quercetin and rutin. Cell Tissue Res 319:383–393

    Article  CAS  PubMed  Google Scholar 

  25. Woo JT, Nakagawa H, Notoya M, Yonezawa T, Udagawa N, Lee IS, Ohnishi M, Hagiwara H, Nagai K (2004) Quercetin suppresses bone resorption by inhibiting the differentiation and activation of osteoclasts. Biol Pharm Bull 27:504–509

    Article  CAS  PubMed  Google Scholar 

  26. Moon JH, Tsushida T, Nakahara K, Terao J (2001) Identification of quercetin 3-O-beta-d-glucuronide as an antioxidative metabolite in rat plasma after oral administration of quercetin. Free Radic Biol Med 30:1274–1285

    Article  CAS  PubMed  Google Scholar 

  27. Terao J, Yamaguchi S, Shirai M, Miyoshi M, Moon JH, Oshima S, Inakuma T, Tsushida T, Kato Y (2001) Protection by quercetin and quercetin 3-O-beta-d-glucuronide of peroxynitrite-induced antioxidant consumption in human plasma low-density lipoprotein. Free Radic Res 35:925–931

    Article  CAS  PubMed  Google Scholar 

  28. Wattel A, Kamel S, Mentaverri R, Lorget F, Prouillet C, Petit JP, Fardelonne P, Brazier M (2003) Potent inhibitory effect of naturally occurring flavonoids quercetin and kaempferol on in vitro osteoclastic bone resorption. Biochem Pharmacol 65:35–42

    Article  CAS  PubMed  Google Scholar 

  29. Ferretti JL, Capozza RF, Zanchetta JR (1996) Mechanical validation of a tomographic (pQCT) index for noninvasive estimation of rat femur bending strength. Bone 18:97–102

    Article  CAS  PubMed  Google Scholar 

  30. Schiessl H, Ferretti JL, Tysarczyk-Niemeyer G, Willnecker J (1996) Non-invasive bone strength index as analyzed by peripheral quantitative computed tomography (pQCT). In: Eckhard S (ed) Paediatric osteology: new developments in diagnostics and therapy. Elsevier, Amsterdam, pp 141–146

  31. Ferritti JL (2000) Peripheral quantitative computed tomography for evaluating structural and mechanical properties of small bone. In: Yuehuei HA, Robert AD (eds) Mechanical testing of bone and the bone-implant interface. CRC Press, Boca Raton, pp 385–406

  32. Parfitt AM, Drezner MK, Glorieux FH, Kanis JA, Malluche H, Meunier PJ, Ott SM, Recker R (1987) Bone histomorphometry: standardization of nomenclature, symbols and units. Report of the ASBMR Histomorphometry Nomenclature Committee. J Bone Miner Res 2:595–610

    Article  CAS  PubMed  Google Scholar 

  33. Shevde NK, Plum LA, Clagett-Dame M, Yamamoto H, Pike JW, DeLuca HF (2002) A potent analog of 1alpha, 25-dihydroxyvitamin D3 selectively induces bone formation. Proc Natl Acad Sci USA 99:13487–13491

    Article  CAS  PubMed  Google Scholar 

  34. Sato T, Yamamoto H, Sawada N, Nashiki K, Tsuji M, Nikawa T, Arai H, Morita K, Taketani Y, Takeda E (2006) Immobilization decreases duodenal calcium absorption through a 1, 25-dihydroxyvitamin D-dependent pathway. J Bone Miner Metab 24:291–299

    Article  CAS  PubMed  Google Scholar 

  35. Mizuha Y, Yamamoto H, Sato T, Tsuji M, Masuda M, Uchida M, Sakai K, Taketani Y, Yasutomo K, Sasaki H, Takeda E (2007) Water extract of Cordyceps sinensis (WECS) inhibits the RANKL-induced osteoclast differentiation. Biofactors 30:105–116

    Article  CAS  PubMed  Google Scholar 

  36. Arai H, Miyamoto K, Taketani Y, Yamamoto H, Iemori Y, Morita K, Tonai T, Nishisho T, Mori S, Takeda E (1997) A vitamin D receptor gene polymorphism in the translation initiation codon: effect on protein activity and relation to bone mineral density in Japanese women. J Bone Miner Res 12:915–921

    Article  CAS  PubMed  Google Scholar 

  37. Wattel A, Kamel S, Prouillet C, Petit JP, Lorget F, Offord E, Brazier M (2004) Flavonoid quercetin decreases osteoclastic differentiation induced by RANKL via a mechanism involving NF kappa B and AP-1. J Cell Biochem 92:285–295

    Article  CAS  PubMed  Google Scholar 

  38. Yoshizumi M, Tsuchiya K, Suzaki Y, Kirima K, Kyaw M, Moon J-H, Terao J, Tamaki T (2002) Quercetin glucuronide prevents VSMC hypertrophy by angiotensin II via the inhibition of JNK and AP-1signaling pathway. Biochem Biophys Res Commun 293:1458–1465

    Article  CAS  PubMed  Google Scholar 

  39. Asagiri M, Takayanagi H (2007) The molecular understanding of osteoclast differentiation. Bone 40:251–264

    Article  CAS  PubMed  Google Scholar 

  40. Kawai Y, Nishikawa T, Shiba Y, Saito S, Murota K, Shibata N, Kobayashi M, Kanayama M, Uchida K, Terao J (2008) Macrophage as a target of quercetin glucuronides in human atherosclerotic arteries: implication in the anti-atherosclerotic mechanism of dietary flavonoids. J Biol Chem 283:9424–9434

    Article  CAS  PubMed  Google Scholar 

  41. Prouillet C, Mazière JC, Mazière C, Wattel A, Brazier M, Kamel S (2004) Stimulatory effect of naturally occurring flavonols quercetin and kaempferol on alkaline phosphatase activity in MG-63 human osteoblasts through ERK and estrogen receptor pathway. Biochem Pharmacol 67:1307–1313

    Article  CAS  PubMed  Google Scholar 

  42. Notoya M, Tsukamoto Y, Nishimura H, Woo JT, Nagai K, Lee IS, Hagiwara H (2004) Quercetin, a flavonoid, inhibits the proliferation, differentiation, and mineralization of osteoblasts in vitro. Eur J Pharmacol 485:89–96

    Article  CAS  PubMed  Google Scholar 

  43. Son YO, Kook SH, Choi KC, Jang YS, Jeon YM, Kim JG, Lee KY, Kim J, Chung MS, Chung GH, Lee JC (2006) Quercetin, a bioflavonoid, accelerates TNF-alpha-induced growth inhibition and apoptosis in MC3T3-E1 osteoblastic cells. Eur J Pharmacol 529:24–32

    Article  CAS  PubMed  Google Scholar 

  44. Kim DS, Takai H, Arai M, Araki S, Mezawa M, Kawai Y, Murota K, Terao J, Ogata Y (2007) Effects of quercetin and quercetin 3-glucuronide on the expression of bone sialoprotein gene. J Cell Biochem 101:790–800

    Article  CAS  PubMed  Google Scholar 

  45. Wuttke W, Jarry H, Westphalen S, Christoffel V, Seidlová-Wuttke D (2002) Phytoestrogens for hormone replacement therapy? J Steroid Biochem Mol Biol 83:133–147

    Article  CAS  PubMed  Google Scholar 

  46. Maggiolini M, Bonofiglio D, Marsico S, Panno ML, Cenni B, Picard D, Andò S (2001) Estrogen receptor alpha mediates the proliferative but not the cytotoxic dose-dependent effects of two major phytoestrogens on human breast cancer cells. Mol Pharmacol 60:595–602

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants to H. Yamamoto, Y. Taketani and E. Takeda from the Ministry of Education, Culture, Sports, Science and Technology of Japan; by grants from the 21st Century COE Program, Human Nutritional Science on Stress Control, Tokushima, Japan; and by Biogenics Research, Kagome Co., Ltd., Tochigi, Japan. The authors thank Mr. K. Nonaka (Elk Corporation) and Mr. H. Hayashi (Kagome), for valuable discussions and technical support during this research. We gratefully acknowledge the assistance of our laboratory colleagues.

Conflict of interest statement

The authors declare that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hironori Yamamoto.

About this article

Cite this article

Tsuji, M., Yamamoto, H., Sato, T. et al. Dietary quercetin inhibits bone loss without effect on the uterus in ovariectomized mice. J Bone Miner Metab 27, 673–681 (2009). https://doi.org/10.1007/s00774-009-0088-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00774-009-0088-0

Keywords

Navigation