Skip to main content

Advertisement

Log in

Performance analysis of polymer electrolyte membrane (PEM) fuel cell stack operated under marine environmental conditions

  • Original article
  • Published:
Journal of Marine Science and Technology Aims and scope Submit manuscript

Abstract

The marine environmental condition, especially NaCl, has been identified as one of the major sources of contamination on the performance of open cathode Proton Exchange Membrane Fuel Cells (PEMFC) system, when the power source is based on fuel cells for marine applications like submarines, navy ships etc., In the present paper, we have studied the performance of PEMFCs under the marine environment for a longer duration and also the recovery mechanism of the PEMFC power pack after contamination. It has been observed that the NaCl is a major contaminant for PEMFC, compared to NO x and SO x , which are major contaminants for fuel cells operating in the land regions. We have observed a performance loss of 60 % in PEMFC, when operated for 48 h, due to poisoning of PEMFC by NaCl vapours. The recovery of the stack is attempted by repeated water washing on the cathode side of the fuel cell, presuming that the salts get deposited only on the surface of the electrodes and the performance is easily recoverable. The recovery mechanisms are analysed by constant-current discharging operation and by modified experimental methods and are reported here. The performance vagaries in fuel cells due to sea water contamination is also analysed by linear fit and it is found that the rate of power increment after water wash is higher than the rate of power increment, around 11.5 W/10 h compared to normal environmental conditions, which is 4.1 W/10 h.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Dosacramento E, Delima L, Oliveira C, Veziroglu T (2008) A hydrogen energy system and prospects for reducing emissions of fossil fuels pollutants in the Ceará state—Brazil. Int J Hydrog Energy 33:2132–2137. doi:10.1016/j.ijhydene.2008.02.018

    Article  Google Scholar 

  2. Verhage AJL, Coolegem JF, Mulder MJJ, Yildirim MH, de Bruijn FA (2013) 30,000 h operation of a 70 kW stationary PEM fuel cell system using hydrogen from a chlorine factory. Int J Hydrog Energy 38:4714–4724. doi:10.1016/j.ijhydene.2013.01.152

    Article  Google Scholar 

  3. Sammes N, Boersma R (2000) Small-scale fuel cells for residential applications. J Power Sources 86:98–110. doi:10.1016/S0378-7753(99)00415-2

    Article  Google Scholar 

  4. Gencoglu MT, Ural Z (2009) Design of a PEM fuel cell system for residential application. Int J Hydrog Energy 34:5242–5248. doi:10.1016/j.ijhydene.2008.09.038

    Article  Google Scholar 

  5. Barreras F, Maza M, Lozano A, Báscones S, Roda V, Barranco JE et al (2012) Design and development of a multipurpose utility AWD electric vehicle with a hybrid powertrain based on PEM fuel cells and batteries. Int J Hydrog Energy 37:15367–15379. doi:10.1016/j.ijhydene.2012.06.091

    Article  Google Scholar 

  6. Corbo P, Corcione FE, Migliardini F, Veneri O (2005) Experimental study of a fuel cell power train for road transport application. J Power Sources 145:610–619. doi:10.1016/j.jpowsour.2005.02.054

    Article  Google Scholar 

  7. Corbo P, Migliardini F, Veneri O (2008) An experimental study of a PEM fuel cell power train for urban bus application. J Power Sources 181:363–370. doi:10.1016/j.jpowsour.2007.10.089

    Article  Google Scholar 

  8. Corbo P, Migliardini F, Veneri O (2007) Performance investigation of 2.4 kW PEM fuel cell stack in vehicles. Int J Hydrog Energy 32:4340–4349. doi:10.1016/j.ijhydene.2007.05.043

    Article  Google Scholar 

  9. Yang D, Ma J, Xu L, Wu M, Wang H (2006) The effect of nitrogen oxides in air on the performance of proton exchange membrane fuel cell. Electrochim Acta 51:4039–4044. doi:10.1016/j.electacta.2005.11.018

    Article  Google Scholar 

  10. Jing F, Hou M, Shi W, Fu J, Yu H, Ming P et al (2007) The effect of ambient contamination on PEMFC performance. J Power Sources 166:172–176. doi:10.1016/j.jpowsour.2006.12.103

    Article  Google Scholar 

  11. Jayaraj P, Karthika P, Rajalakshmi N, Dhathathreyan KS (2014) Mitigation studies of sulfur contaminated electrodes for PEMFC. Int J Hydrog Energy 39:12045–12051. doi:10.1016/j.ijhydene.2014.06.011

    Article  Google Scholar 

  12. Hwang K-R, Ryi S-K, Lee C-B, Lee S-W, Park J-S (2011) Simplified, plate-type Pd membrane module for hydrogen purification. Int J Hydrog Energy 36:10136–10140. doi:10.1016/j.ijhydene.2011.04.146

    Article  Google Scholar 

  13. Miura S, Fujisawa A, Ishida M (2012) A hydrogen purification and storage system using metal hydride. Int J Hydrog Energy 37:2794–2799. doi:10.1016/j.ijhydene.2011.03.150

    Article  Google Scholar 

  14. Veldhuis I, Richardson R, Stone H (2007) Hydrogen fuel in a marine environment. Int J Hydrog Energy 32:2553–2566. doi:10.1016/j.ijhydene.2006.11.013

    Article  Google Scholar 

  15. Choi JW, Hwang Y-S, Seo J-H, Lee DH, Cha SW, Kim MS (2010) An experimental study on the purge characteristics of the cathodic dead-end mode PEMFC for the submarine or aerospace applications and performance improvement with the pulsation effects. Int J Hydrog Energy 35:3698–3711. doi:10.1016/j.ijhydene.2010.01.133

    Article  Google Scholar 

  16. Psoma A, Sattler G (2002) Fuel cell systems for submarines: from the first idea to serial production 106:381–383

    Google Scholar 

  17. Contract with US Navy (2008) 2008

  18. Sattler G (2000) Fuel cells going on-board. J Power Sources 86:61–67. doi:10.1016/S0378-7753(99)00414-0

    Article  Google Scholar 

  19. Veleva L, Farro W (2012) Applied surface science influence of seawater and its aerosols on copper patina composition. Appl Surf Sci 258:10072–10076. doi:10.1016/j.apsusc.2012.06.077

    Article  Google Scholar 

  20. Lam A, Li H, Zhang S, Wang H, Wilkinson DP, Wessel S et al (2012) Ex situ study of chloride contamination on carbon supported Pt catalyst. J Power Sources 205:235–238. doi:10.1016/j.jpowsour.2012.01.063

    Article  Google Scholar 

  21. Ali ST, Li Q, Pan C, Jensen JO, Nielsen LP, Møller P (2011) Effect of chloride impurities on the performance and durability of polybenzimidazole-based high temperature proton exchange membrane fuel cells. Int J Hydrog Energy 36:1628–1636. doi:10.1016/j.ijhydene.2010.10.076

    Article  Google Scholar 

  22. Nagahara Y, Sugawara S, Shinohara K (2008) The impact of air contaminants on PEMFC performance and durability. J Power Sources 182:422–428. doi:10.1016/j.jpowsour.2007.12.091

    Article  Google Scholar 

  23. Li H, Zhang S, Qian W, Yu Y, Yuan X-Z, Wang H et al (2012) Impacts of operating conditions on the effects of chloride contamination on PEM fuel cell performance and durability. J Power Sources 218:375–382. doi:10.1016/j.jpowsour.2012.07.003

    Article  Google Scholar 

  24. Cheng X, Shi Z, Glass N, Zhang L, Zhang J, Song D et al (2007) A review of PEM hydrogen fuel cell contamination: impacts, mechanisms, and mitigation. J Power Sources 165:739–756. doi:10.1016/j.jpowsour.2006.12.012

    Article  Google Scholar 

  25. Song SA, Kim HK, Ham HC, Han J, Nam SW, Yoon SP (2013) Effects of marine atmosphere on the cell performance in molten carbonate fuel cells. J Power Sources 232:17–22. doi:10.1016/j.jpowsour.2013.01.005

    Article  Google Scholar 

  26. Yan W-M, Chu H-S, Liu Y-L, Chen F, Jang J-H (2011) Effects of chlorides on the performance of proton exchange membrane fuel cells. Int J Hydrog Energy 36:5435–5441. doi:10.1016/j.ijhydene.2011.01.158

    Article  Google Scholar 

  27. Li H, Wang H, Qian W, Zhang S, Wessel S, Cheng TTH et al (2011) Chloride contamination effects on proton exchange membrane fuel cell performance and durability. J Power Sources 196:6249–6255. doi:10.1016/j.jpowsour.2011.04.018

    Article  Google Scholar 

  28. Lopes T, Paganin VA, Gonzalez ER (2011) The effects of hydrogen sulfide on the polymer electrolyte membrane fuel cell anode catalyst : H 2 S–Pt/C interaction products. J Power Sources 196:6256–6263. doi:10.1016/j.jpowsour.2011.04.017

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge Dr. G. Sundararajan, Director ARCI for his encouragement. This work was carried out under a project which was supported under the DST–RCUK initiative.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Rajalakshmi.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sasank, B.V., Rajalakshmi, N. & Dhathathreyan, K.S. Performance analysis of polymer electrolyte membrane (PEM) fuel cell stack operated under marine environmental conditions. J Mar Sci Technol 21, 471–478 (2016). https://doi.org/10.1007/s00773-016-0369-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00773-016-0369-y

Keywords

Navigation