Skip to main content
Log in

A coupled FDM–FEM method for free surface flow interaction with thin elastic plate

  • Original article
  • Published:
Journal of Marine Science and Technology Aims and scope Submit manuscript

Abstract

A partitioned approach by the coupling finite difference method (FDM) and the finite element method (FEM) is developed for simulating the interaction between free surface flow and a thin elastic plate. The FDM, in which the constraint interpolation profile method is applied, is used for solving the flow field in a regular fixed Cartesian grid, and the tangent of the hyperbola for interface capturing with the slope weighting scheme is used for capturing free surface. The FEM is used for solving structural deformation of the thin plate. A conservative momentum-exchange method, based on the immersed boundary method, is adopted to couple the FDM and the FEM. Background grid resolution of the thin plate in a regular fixed Cartesian grid is important to the computational accuracy by using this method. A virtual structure method is proposed to improve the background grid resolution of the thin plate. Both of the flow solver and the structural solver are carefully tested and extensive validations of the coupled FDM–FEM method are carried out on a benchmark experiment, a rolling tank sloshing with a thin elastic plate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Xing JT, Price WG, Chen YG (2003) A mixed finite-element finite-difference method for nonlinear fluid–structure interaction dynamics. I. Fluid-rigid structure interaction. Proc R Soc A Math Phys Eng Sci 459(2038):2399–2430

    Article  MathSciNet  MATH  Google Scholar 

  2. Dettmer D, Peric D (2006) A computational framework for fluid-rigid body interaction: finite element formulation and applications. Comput Methods Appl Mech Eng 195:1633–1666

    Article  MathSciNet  MATH  Google Scholar 

  3. Yang J, Preidikman S, Balaras E (2008) A strongly coupled, embedded-boundary method for fluid–structure interactions of elastically mounted rigid bodies. J Fluids Struct 24:167–182

    Article  MATH  Google Scholar 

  4. Guruswamy GP (2002) A review of numerical fluids/structures interface methods for computations using high-fidelity equations. Comput Struct 80:31–41

    Article  Google Scholar 

  5. Mehl M, Brenk M, Bungartz HJ, Daubner K, Muntean IL, Neckel T (2008) An Eulerian approach for partitioned fluid–structure simulations on Cartesian grids. Comput Mech 43:115–124

    Article  MATH  Google Scholar 

  6. Peter MA, Meylan AH (2010) A general spectral approach to the time-domain evolution of linear water waves impacting on vertical elastic plate. SIAM J Appl Math 70(7):2308–2328

    Article  MathSciNet  MATH  Google Scholar 

  7. He GH, Kashiwagi M (2010) Nonlinear analysis on wave-plate interaction due to disturbed vertical elastic plate. J Hydrodyn 22(5):507–512

    Article  Google Scholar 

  8. Antoci C, Gallati M, Sibilla S (2007) Numerical simulation of fluid–structure by SPH. Comput Struct 85:879–890

    Article  Google Scholar 

  9. Potapov S, Maurel B, Combescure A, Fabis J (2009) Modeling accidental-type fluid–structure interaction problems with the SPH method. Comput Struct 87:721–734

    Article  Google Scholar 

  10. Wlhorn E, Kolke A, Hubner B (2005) Fluid–structure coupling within a monolithic model involving free surface flows. Comput Struct 83:2100–2111

    Article  Google Scholar 

  11. Kassiotis C, Ibrahimbegovic A, Matthies H (2010) Partitioned solution to fluid–structure interaction problem in application to free-surface flows. Eur J Mech B Fluids 29:510–521

    Article  MathSciNet  MATH  Google Scholar 

  12. Idelsohn SR, Marti J, Souto-lglesias A, Onate E (2008) Interaction between an elastic structure and free-surface flows: experimental versus numerical comparisons using the PFEM. Comput Mech 43:125–132

    Article  MATH  Google Scholar 

  13. Idelsohn SR, Marti J, Souto-Iglesias A, Onate E (2008) Unified Lagrangian formulation for elastic solids and incompressible fluids: application to fluid–structure interaction problem via PFEM. Comput Methods Appl Mech Eng 197:1762–1776

    Article  MATH  Google Scholar 

  14. Degroote J, Souto-Iglesias A, Van Paepegem W, Vierendeels J (2010) Partitioned simulation of the interaction between an elastic structure and free surface flow. Comput Methods Appl Mech Eng 199:2085–2098

    Article  MATH  Google Scholar 

  15. Xiao F, Honma Y, Kono T (2005) A simple algebraic interface capturing scheme suing hyperbolic tangent function. Int J Numer Methods Fluids 48:1023–1040

    Article  MATH  Google Scholar 

  16. Xiao F, Satoshi I, Chen CG (2011) Revisit to the THINC scheme: a simple algebraic VOF algorithm. J Comput Phys 230:7089–7092

    Article  Google Scholar 

  17. Peskin CS (1972) Flow patterns around heart valves. J Comput Phys 10:252–271

    Article  MathSciNet  MATH  Google Scholar 

  18. Takewaki H, Yabe T (1987) Cubic-interpolated pseudo particle (CIP) method—application to nonlinear or multi-dimensional problems. J Comput Phys 70:355–372

    Article  MATH  Google Scholar 

  19. Yabe T, Ishikawa T, Wang PY, Aoki T, Kadota Y, Ikeda F (1991) A universal solver for hyperbolic equations by cubic-polynomial interpolation II. Two- and three-dimensional solvers. Comput Phys Commun 66:233–242

    Article  MathSciNet  MATH  Google Scholar 

  20. Yabe T, Xiao F, Utsumi T (2001) The constrained interpolation profile method for multiphase analysis. J Comput Phys 169:556–593

    Article  MathSciNet  MATH  Google Scholar 

  21. Hu CH, Kashiwagi M (2004) A CIP-based method for numerical simulations of violent free surface flows. J Mar Sci Technol 9:143–157

    Article  Google Scholar 

  22. Hu CH, Kashiwagi M (2009) Two-dimensional numerical simulation and experimental strongly nonlinear wave–body interactions. J Mar Sci Technol 14:200–213

    Article  Google Scholar 

  23. Smagorinsky J (1963) General circulation experiments with the primitive equation, I. The basic experiment. Mon Weather Rev 91:99–165

    Article  Google Scholar 

  24. Hu CH, Kashiwagi M, Kishev Z, Sueyoshi M, Faltinsen O (2006) Application of CIP method for strongly nonlinear marine hydrodynamics. Ship Technol Res 53(2):74–87

    Google Scholar 

  25. Bathe KJ, Ramm E, Wilson EL (1975) Finite element formulations for large deformation dynamic analysis. Int J Numer Methods Eng 9:353–386

    Article  MATH  Google Scholar 

  26. Levinson DA, Kane TR (1981) Simulation of large motions of non-uniform beams in orbit: part I—the cantilever beam. J Astron Sci 29(3):213–244

    Google Scholar 

  27. Belytschko T, Hseih BJ (1973) Nonlinear finite element analysis with convected coordinates. Int J Numer Methods Eng 7:255–271

    Article  MATH  Google Scholar 

  28. Crisfield MA (1991) Non-linear Finite Element Analysis of Solids and Structures, vol 1. Wiley, Chichester

    Google Scholar 

  29. Yaw LL (2008) Co-rotational meshfree formulation for large deformation inelastic analysis of two-dimensional structural systems. PhD thesis, Deparrtment of Civil and Environmental Engineering, UC Davis

  30. Behdinan K, Stylianou MC, Tabarrok B (1998) Co-rotational dynamic analysis of flexible beams. Comput Methods Appl Mech Eng 154:151–161

    Article  MATH  Google Scholar 

  31. Hsiao KM, Jang JY (1991) Dynamic analysis of planar flexible mechanisms by co-rotational formulation. Comput Methods Appl Mech Eng 87:1–14

    Article  MATH  Google Scholar 

  32. Belendez T, Neipp C, Belendez A (2003) Numerical and experimental analysis of a cantilever beam: a laboratory project to introduce geometric nonlinearity in mechanics of materials. Int J Eng Educ 19(6):885–892

    Google Scholar 

  33. Mittal R, Iaccarino G (2005) Immersed boundary methods. Annu Rev Fluid Mech 37:239–261

    Article  MathSciNet  Google Scholar 

  34. Kajishima T, Takiguchi S, Hamasaki H, Miyake Y (2001) Turbulence structure of particle-laden flow in a vertical plane channel due to vortex shedding. JSME Int J Ser B 44(4):526–535

    Article  Google Scholar 

  35. Kajishima T, Takiguchi S (2002) Interaction between particle clusters and fluid turbulence. Int J Heat Fluid Flow 23(5):639–646

    Article  Google Scholar 

  36. Courant R, Friedrichs K, Lewy H (1928) Über die partiellen Differenzengleichungen der mathematischen Physik (in German). Math Ann 100(1):32–74

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors thank Prof. Masashi Kashiwagi of Osaka University and Prof. Xian Chen of Yamaguchi University for their valuable discussions, comments and support. The authors are also grateful to thank Class NK for providing the experimental data used in Sect. 2. This research was partially supported by Grants-in Aid for Scientific Research (B), MEXT (No. 21360433).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changhong Hu.

About this article

Cite this article

Liao, K., Hu, C. A coupled FDM–FEM method for free surface flow interaction with thin elastic plate. J Mar Sci Technol 18, 1–11 (2013). https://doi.org/10.1007/s00773-012-0191-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00773-012-0191-0

Keywords

Navigation