Skip to main content
Log in

Calibration strategies for quantifying the Mn content of tooth and bone samples by LA-ICP-MS

  • Practitioner's Report
  • Published:
Accreditation and Quality Assurance Aims and scope Submit manuscript

Abstract

There is a growing interest in using biomonitoring of tooth and bone specimens to assess human exposure to manganese (Mn). Information on historical exposure to Mn can be obtained through micro-spatial analysis of such specimens by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). The principal aim of this study was to compare several calibration strategies for determining Mn content in tooth and bone by LA-ICP-MS including: (a) a six-point calibration curve based on synthesized hydroxyapatite (HA) materials, and single-point calibrations based on (b) NIST SRM 1400 Bone Ash, (c) NIST SRM 1486 Bone Meal, and (d) NIST SRM 612 Trace Elements in Glass. Performance was similar between different ICP-MS platforms (quadrupole ICP-MS, dynamic reaction cell ICP-MS, and sector field ICP-MS). Data based on calibration using the 55Mn count rate were compared to that based on using the 55Mn/43Ca count rate ratio to obtain results as the Mn mass fraction. Reasonable performance was obtained by calibration using either SRM 612 or SRM 1400, in combination with the 55Mn/43Ca count rate ratio and using either the synthesized HA standards or SRM 1400 as calibrators, combined with 55Mn count rate. By contrast, calibration based on SRM 1486 resulted in a systematic low bias. While there are several options for quantifying the Mn content of tooth and bone using LA-ICP-MS, users should be aware of the potential for strong matrix effects that may affect results. Overall, determining the 55Mn/43Ca count rate ratio, rather than the mass fraction, may represent a better approach for reporting the content of Mn in tooth and bone by LA-ICP-MS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

References

  1. Arora M, Kennedy BJ, Elhlou S, Pearson NJ, Walker DM, Bayl P, Chan SWY (2006) Spatial distribution of lead in human primary teeth as a biomarker of pre- and neonatal lead exposure. Sci Total Environ 371:55–62

    Article  CAS  Google Scholar 

  2. Grün R, Aubert M, Joannes-Boyau R, Moncel MH (2008) High resolution analysis of uranium and thorium concentration as well as U-series isotope distributions in a Neanderthal tooth from Payre (Ardèche, France) using laser ablation ICP-MS. Geochim Cosmochim Acta 72:5278–5290

    Article  Google Scholar 

  3. Shepherd TJ, Dirks W, Manmee C, Hodgson S, Banks DA, Averley P, Pless-Mulloli T (2012) Reconstructing the life-time lead exposure in children using dentine in deciduous teeth. Sci Total Environ 425:214–222

    Article  CAS  Google Scholar 

  4. Castro W, Hoogewerff J, Latkoczy C, Almirall JR (2010) Application of laser ablation (LA-ICP-SF-MS) for the elemental analysis of bone and teeth samples for discrimination purposes. Forensic Sci Int 195:17–27

    Article  CAS  Google Scholar 

  5. Uryu T, Yoshinaga J, Yanagisawa Y, Endo M, Takahashi J (2003) Analysis of lead in tooth enamel by laser ablation-inductively coupled plasma-mass spectrometry. Anal Sci 19:1413–1416

    Article  CAS  Google Scholar 

  6. Bellis DJ, Hetter KM, Jones J, Arnarasiriwardena D, Parsons PJ (2008) Lead in teeth from lead-dosed goats: micro distribution and relationship to the cumulative lead dose. Environ Res 106:34–41

    Article  CAS  Google Scholar 

  7. Hare D, Austin C, Doble P, Arora M (2011) Elemental bio-imaging of trace elements in teeth using laser ablation-inductively coupled plasma-mass spectrometry. J Dent 39:397–403

    Article  CAS  Google Scholar 

  8. Arora M, Hare D, Austin C, Smith DR, Doble P (2011) Spatial distribution of manganese in enamel and coronal dentine of human primary teeth. Sci Total Environ 409:1315–1319

    Article  CAS  Google Scholar 

  9. Charadram N, Austin C, Trimby P, Simonian M, Swain MV, Hunter N (2013) Structural analysis of reactionary dentin formed in response to polymicrobial invasion. J Struct Biol 181:207–222

    Article  CAS  Google Scholar 

  10. Vašinová Galiová M, Nývltová Fišáková M, Kynický J, Prokeš L, Neff H, Mason AZ, Gadas P, Košler J, Kanický V (2013) Elemental mapping in fossil tooth root section of Ursus arctos by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). Talanta 105:235–243

    Article  Google Scholar 

  11. Stadlbauer C, Reiter C, Patzak B, Stingeder G, Prohaska T (2007) History of individuals of the 18th/19th centuries stored in bones, teeth, and hair analyzed by LA-ICP-MS-a step in attempts to confirm the authenticity of Mozart’s skull. Anal Bioanal Chem 388:593–602

    Article  CAS  Google Scholar 

  12. Ugarte A, Unceta N, Pécheyran C, Goicolea MA, Barrio RJ (2011) Development of matrix-matching hydroxyapatite calibration standards for quantitative multi-element LA-ICP-MS analysis: application to the dorsal spine of fish. J Anal At Spectrom 26:1421–1427

    Article  CAS  Google Scholar 

  13. Abdullah MM, Ly AR, Goldberg WA, Clarke-Stewart KA, Dudgeon JV, Mull CG, Chan TJ, Kent EE, Mason AZ, Ericson JE (2012) Heavy metal in children’s tooth enamel: related to autism and disruptive behaviors? J Autism Dev Disord 42:929–936

    Article  Google Scholar 

  14. Hetter KM, Bellis DJ, Geraghty C, Todd AC, Parsons PJ (2008) Development of candidate reference materials for the measurement of lead in bone. Anal Bioanal Chem 391:2011–2021

    Article  CAS  Google Scholar 

  15. Bellis DJ, Hetter KM, Jones J, Amarasiriwardena D, Parsons PJ (2006) Calibration of laser ablation inductively coupled plasma mass spectrometry for quantitative measurements of lead in bone. J Anal At Spectrom 21:948–954

    Article  CAS  Google Scholar 

  16. Farell J, Amarasiriwardena D, Goodman AH, Arriaza B (2013) Bioimaging of trace metals in ancient Chilean mummies and contemporary Egyptian teeth by laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS). Microchem J 106:340–346

    Article  CAS  Google Scholar 

  17. Hanć A, Olszewska A, Barałkiewicz D (2013) Quantitative analysis of elements migration in human teeth with and without filling using LA-ICP-MS. Microchem J 110:61–69

    Article  Google Scholar 

  18. Bellis DJ, Hetter KM, Verostek MF, Parsons PJ (2008) Characterization of candidate reference materials for bone lead via interlaboratory study and double isotope dilution mass spectrometry. J Anal At Spectrom 23:298–308

    Article  CAS  Google Scholar 

  19. Takser L, Mergler D, Hellier G, Sahuquillo J, Huel G (2003) Manganese, monoamine metabolite levels at birth, and child psychomotor development. Neurotoxicology 24:667–674

    Article  CAS  Google Scholar 

  20. Ericson JE, Crinella FM, Clarke-Stewart KA, Allhusen VD, Chan T, Robertson RT (2007) Prenatal manganese levels linked to childhood behavioral disinhibition. Neurotoxicol Teratol 29:181–187

    Article  CAS  Google Scholar 

  21. Henn BC, Ettinger AS, Schwartz J, Téllez-Rojo MM, Lamadrid-Figueroa H, Hernández-Avila M, Schnaas L, Amarasiriwardena C, Bellinger DC, Hu H, Wright RO (2010) Early postnatal blood manganese levels and children’s neurodevelopment. Epidemiology 21:433–439

    Article  Google Scholar 

  22. Arora M, Bradman A, Austin C, Vedar M, Holland N, Eskenazi B, Smith DR (2012) Determining fetal manganese exposure from mantle dentine of deciduous teeth. Environ Sci Technol 46:5118–5125

    Article  CAS  Google Scholar 

  23. Gunier RB, Bradman A, Jerrett M, Smith DR, Harley KG, Austin C, Vedar M, Arora M, Eskenazi B (2013) Determinants of manganese in prenatal dentin of shed teeth from CHAMACOS children living in an agricultural community. Environ Sci Technol 47:11249–11257

    Article  CAS  Google Scholar 

  24. NIST SRM 612 Trace Elements in Glass Certificate of Analysis (2012) NIST, Gaithersburg. http://www.nist.gov/srm. Accessed 24 July 2013

  25. Praamsma ML, Parsons PJ (2014) Characterization of calcified reference materials for assessing the reliability of manganese determinations in teeth and bone. J Anal At Spectrom 29:1243–1251

    Article  CAS  Google Scholar 

  26. NIST SRM 1400 Bone Ash Certificate of Analysis (1992) NIST, Gaithersburg. http://www.nist.gov/srm. Accessed 24 July 2013

  27. NIST SRM 1486 Bone Meal Certificate of Analysis (1992) NIST, Gaithersburg. http://www.nist.gov/srm. Accessed 24 July 2013

  28. Arnold WH, Gaengler P (2007) Quantitative analysis of the calcium and phosphorus content of developing and permanent human teeth. Ann Anat 189:183–190

    Article  CAS  Google Scholar 

  29. Praamsma ML, Arnason JG, Parsons PJ (2011) Monitoring Mn in whole blood and urine: a comparison between electrothermal atomic absorption and inorganic mass spectrometry. J Anal At Spectrom 26:1224–1232

    Article  CAS  Google Scholar 

  30. Longerich HP, Jackson SE, Günther D (1996) Laser ablation inductively coupled plasma mass spectrometric transient signal data acquisition and analyte concentration calculation. J Anal At Spectrom 11:899–904

    Article  CAS  Google Scholar 

  31. Gruhl S, Witte F, Vogt J, Vogt C (2009) Determination of concentration gradients in bone tissue generated by a biologically degradable magnesium implant. J Anal At Spectrom 24:181–188

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick J. Parsons.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Praamsma, M.L., Parsons, P.J. Calibration strategies for quantifying the Mn content of tooth and bone samples by LA-ICP-MS. Accred Qual Assur 21, 385–393 (2016). https://doi.org/10.1007/s00769-016-1234-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00769-016-1234-8

Keywords

Navigation