Skip to main content
Log in

A mathematical model for simulating spring discharge and estimating sinkhole porosity in a karst watershed

Ein mathematisches Modell zur Simulation des Quellabflusses und Berechnung der Dolinendichte in einem Karsteinzugsgebiet

  • Fachbeitrag
  • Published:
Grundwasser Aims and scope Submit manuscript

Abstract

Documenting and understanding water balances in a karst watershed in which groundwater and surface water resources are strongly interconnected are important aspects for managing regional water resources. Assessing water balances in karst watersheds can be difficult, however, because karst watersheds are so very strongly affected by groundwater flows through solution conduits that are often connected to one or more sinkholes. In this paper we develop a mathematical model to approximate sinkhole porosity from discharge at a downstream spring. The model represents a combination of a traditional linear reservoir model with turbulent hydrodynamics in the solution conduit connecting the downstream spring with the upstream sinkhole, which allows for the simulation of spring discharges and estimation of sinkhole porosity. Noting that spring discharge is an integral of all aspects of water storage and flow, it is mainly dependent on the behavior of the karst aquifer as a whole and can be adequately simulated using the analytical model described in this paper. The model is advantageous in that it obviates the need for a sophisticated numerical model that is much more costly to calibrate and operate. The model is demonstrated using the St. Marks River Watershed in northwestern Florida.

Zusammenfassung

Die Bestimmung von Wasserbilanzen in Karsteinzugsgebieten, in welchen Grundwasser und Oberflächenwasser miteinander in Kontakt stehen, ist ein wichtiger Aspekt für die Bewirtschaftung regionaler Grundwasserressourcen. Das Abschätzen der Wasserbilanzen kann allerdings schwierig sein, denn die Grundwasserströmung in Karsteinzugsgebieten wird sehr stark durch hochdurchlässige Karströhren beeinflusst, die oft mit einer oder mehreren Dolinen verbunden sind. In diesem Artikel wird die Entwicklung eines mathematischen Modells zur Abschätzung der Dolinendichte (Anteil von Dolinen an der Einzugsgebietsfläche) aus dem Schüttungsverhalten einer Quelle präsentiert. Das Modell ist eine Kombination aus einem traditionellen linearen Reservoirmodell unter Berücksichtigung turbulenter Verhältnisse der Karströhre, welche die Quelle und die Doline miteinander verbindet. Der Quellabfluss repräsentiert als integrales Gebietssignal alle Aspekte von Strömung und Wasserspeicherung und hängt von der Summe der Systemeigenschaften des Quelleinzugsgebietes ab. Er kann durch das in diesem Artikel beschriebene analytische Modell simuliert werden. Das Modell kann den Einsatz aufwendiger numerischer Modelle überflüssig machen, welche einen höheren Aufwand für Kalibrierung und Anwendung benötigen. Die Anwendung des Modells wird am Beispiel des St. Marks Flusseinzugsgebietes im Nordwesten Floridas demonstriert.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abtew, W.: Evapotranspiration measurements and modeling for three wetland systems in South Florida. J. Am. Water Resour. Assoc. 32(3), 465–473 (1996). doi:10.1111/j.1752-1688.1996.tb04044.x

    Article  Google Scholar 

  • Atkinson, T.C.: Diffuse flow and conduit flow in limestone terrain in the Mendip Hills, Somerset (Great Britain). J. Hydrol. 35, 93–103 (1977)

    Article  Google Scholar 

  • Barenblatt, G.I., Zheltov, I.P., Kochina, I.N.: Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks. J. Appl. Math. Mech. 24(5), 1286–1303 (1960)

    Article  Google Scholar 

  • Birk, S., Hergarten, S.: Early recession behaviour of spring hydrographs. J. Hydrol. 387, 24–32 (2010)

    Article  Google Scholar 

  • Birk, S., Liedl, R., Sauter, M.: Karst spring responses examined by process-based modeling. Ground Water 44(6), 832–836 (2006). doi:10.1111/j.1745-6584.2006.00175.x

    Article  Google Scholar 

  • Boning, C.R.: Florida’s Rivers. Pineapple Press, Sarasota (2007)

    Google Scholar 

  • Eidse, F.: Looking at the big picture. Northwest Florida water management district, Water public information bulletin 01-1. http://www.nwfwmd.state.fl.us/pubs/big_picture/st_marks.pdf. Accessed January 6, 2013 (undated)

  • Field, M.S.: Karst hydrology and chemical contamination. J. Environ. Syst. 22(1), 1–26 (1993)

    Article  Google Scholar 

  • Field, M.S.: Simulating drainage from a flooded sinkhole. Acta Carsol. 39(2), 361–378 (2010)

    Google Scholar 

  • Fetter, C.W.: Applied Hydrogeology. Prentice Hall, New York (2000)

    Google Scholar 

  • Geyer, T., Birk, S., Liedl, R., Sauter, M.: Quantification of temporal distribution of recharge in karst systems from spring hydrographs. J. Hydrol. 348, 452–463 (2008). doi:10.1016/j.jhydrol.2007.10.015

    Article  Google Scholar 

  • Halihan, T., Wicks, C.M.: Modeling of storm responses in conduit flow aquifers with reservoirs. J. Hydrol. 208, 82–91 (1998). doi:10.1016/S0022-1694(98)00149-8

    Article  Google Scholar 

  • Hazlett-Kincaid, Inc.: Hydrogeological characterization and modeling of the Woodville Karst Plain, North Florida. Report of investigations, Tallahassee, Florida (2007)

  • Kincaid, T.: Woodvile Karst Plain: project updates: Ames Sink tracer test. http://www.globalunderwaterexplorers.org/node/777. Accessed 22 June 2012 (2012)

  • Kovács, A., Perrochet, P., Király, L., Jeannin, P.Y.: A quantitative method for the characterization of karst aquifers based on spring hydrograph analysis. J. Hydrol. 303, 152–164 (2005)

    Article  Google Scholar 

  • Lewis, F.G., Wooten, N.D., Bartel, R.L.: Lower St. Marks River/Wakulla River/Apalachee Bay resource characterization. Northwest Florida Water Management District, Water resources special report 2009-01. http://www.nwfwmd.state.fl.us/pubs/wrsr09-01/st_marks_resource_characterization-2009-final.pdf. Accessed January 6, 2013 (2009)

  • Li, G.: Laboratory simulation of solute transport and retention in a karst aquifer. Ph.D. dissertation, Florida State University (2004)

  • Li, G., Loper, D.E., Kung, R.: Contaminant sequestration in karstic aquifers: experiments and quantification. Water Resour. Res. 44, W02429 (2008). doi:10.1029/2006WR005797

    Google Scholar 

  • Loper, D.E., Chicken, E.: A leaky-conduit model of transient flow in karstic aquifers. Math. Geosci. 43(8), 995–1009 (2011). doi:10.1007/s11004-011-9369-y

    Article  Google Scholar 

  • Maillet, E.: Essais D’Hydraulique Souterraine et Fluviale. Hermann, Paris (1905)

    Google Scholar 

  • Palmer, A.N.: Prediction of contaminant paths in karst aquifers. In: Proceedings of the 1st Conference on Environmental Problems in Karst Terranes and Their Solutions, Bowling Green, KY, National Water Well Association, pp. 32–53 (1986)

    Google Scholar 

  • Peterson, E.W., Wicks, C.M.: Fluid and solute transport from a conduit to a matrix in a carbonate aquifer system. Math. Geol. 37(8), 851–867 (2005). doi:10.1007/s11004-0059211-5

    Article  Google Scholar 

  • Reimann, T., Birk, S., Rehrl, C., Shoemaker, W.B.: Modifications to the conduit flow process mode 2 for MODFLOW-2005. Ground Water 50(1), 144–148 (2012). doi:10.1111/j.1745-6584.2011.00805.x

    Article  Google Scholar 

  • Rorabaugh, M.I.: Estimating changes in bank storage and ground-water contribution to streamflow. Bull. Int. Assoc. Sci. Hydrol. 63, 432–441 (1964)

    Google Scholar 

  • Schlichting, H.: Boundary Layer Theory, 6th edn. McGraw-Hill, New York (1968)

    Google Scholar 

  • Spechler, R.M., Schiffer, D.M.: Springs of Florida. U.S. Geological Survey fact sheet FS–151–95 (1995)

  • Sutula, M., Day, J.W., Cable, J., Rudnick, D.: Hydrological and nutrient budgets of freshwater and estuarine wetlands of Taylor Slough in Southern Everglades, Florida (U.S.A.). Biogeochemistry 56, 287–310 (2001)

    Article  Google Scholar 

  • USGS: USGS Stream gage No. 02326900 St. Marks River near Newport, FL. http://waterdata.usgs.gov/usa/nwis/uv?site_no=02326900. Accessed May, 12 2012 (2012)

Download references

Acknowledgements

Funding support of this study was provided in part by the National Science Foundation of China under grant 41162008. Special gratitude to the Editor, Tobias Geyer, and two anonymous reviewers for their insightful comments and constructive suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Malcolm S. Field.

Additional information

The views expressed in this paper are solely those of the authors and do not necessarily reflect the views or policies of the U.S. Environmental Protection Agency.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, G., Field, M.S. A mathematical model for simulating spring discharge and estimating sinkhole porosity in a karst watershed. Grundwasser 19, 51–60 (2014). https://doi.org/10.1007/s00767-013-0243-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00767-013-0243-3

Keywords

Navigation