Skip to main content
Log in

Transportverhalten kurzkettiger Alkylphenole (SCAP) im Grundwasser und in der Umwelt

Transport behaviour of short chained alkyl phenols (SCAP) in groundwater and environment

  • Fachbeitrag
  • Published:
Grundwasser Aims and scope Submit manuscript

Zusammenfassung

Um SCAP – short chained alkylphenols – als kontaminationsspezifischen Fingerabdruck sowie als Transport- und Prozessindikatoren im Grundwasser nutzen zu können, müssen die einzelnen Verbindungen entsprechende Unterschiede in ihren chemisch-physikalischen Eigenschaften aufweisen. Die für Phenol noch sehr guten Wasserlöslichkeiten sinken mit weiterer Alkylierung. Während das Phenol sehr kleine Verteilungsgleichgewichtskoeffizienten logKOW und logKOC hat, steigen diese mit zunehmendem Alkylierungsgrad innerhalb der Gruppe der SCAP an. Hieraus resultiert deren Fraktionierungspotenzial beim Transport, welches anhand eines Feldbeispiels veranschaulicht wird. Bewertungen der Toxizität und des Abbauverhaltens zeigen Diskrepanzen über den Kenntnisstand der SCAP auf, deuten die Machbarkeit von Natural Attenuation aber prinzipiell an. Die aufgezeigten umweltrelevanten Eigenschaften belegen das äußerst dynamische Transportverhalten kurzkettiger Alkylphenole und eröffnen somit neue Anwendungspotenziale wie deren Nutzung als Transport- und Prozessindikatoren.

Abstract

The use of SCAPs – short-chained alkyl phenols – as industrial fingerprints and as process- and transport-indicators in groundwater is based on their environmental behaviour. The chemical and physical properties have to be different enough between each compound in order to observe fractionation during transport. Water solubility is high for phenols and decreases with the amount of alkylation. The partitioning coefficients logKOW and logKOW for phenols are very small and increase with growing degrees of alkylation. This leads to fractionation of the compounds within the aquifer, which was demonstrated in a field study. In spite of limited literature data on toxicity and degradability for some SCAP compounds, natural attenuation is still a possible remediation technique. Overall, the environmental behaviour of SCAPs indicates that they are mobile in aquifers. This creates opportunities for new applications such as their use as process- and transport-indicators in the assessment of contaminated sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Abb. 1
Abb. 2

Literatur

  • Aguer, J.P., Mailhot, G., Bolte, M.: Unexpected 2,4,6-trimethylphenol oxidation in the presence of Fe(III) aquacomplexes. New J. Chem. 30, 191–196 (2006)

    Article  Google Scholar 

  • Barbieri, M., Carrera, J., Ayora, C., Sanchez-Vila, X., Licha, T., Nödler, K., Osorio, V., Pérez, S., Köck-Schulmeyer, M., López de Alda, M., Barceló, D.: Effect of denitrifying conditions on the fate of the pharmaceuticals diclofenac and sulfamethoxazole in aquifer material: batch experiments. Sci. Total Environ. 42, 256–263 (2012a)

    Article  Google Scholar 

  • Barbieri, M., Licha, T., Nödler, K., Carrera, J., Ayora, C., Sanchez-Vila, X.: Fate of beta-blockers in aquifer material under nitrate reducing conditions: batch experiments. Chemosphere 89(11), 1272–1277 (2012b)

    Article  Google Scholar 

  • Bennett, B., Noke, K.J., Bowler, B.F.J., Larter, S.R.: The accurate determination of C0-C3 alkylphenol concentration in crude oils. Int. J. Environ. Anal. Chem. 87(5), 307–320 (2007)

    Article  Google Scholar 

  • Broholm, K., Hansen, A.B., Jorgensen, P.R., Arvin, E., Hansen, M.: Transport and biodegradation of creosote compounds in a large, intact, fractured clayey till column. J. Contam. Hydrol. 39(3–4), 331–348 (1999)

    Article  Google Scholar 

  • Broholm, K., Nilsson, B., Sidle, R.C.: Transport and biodegradation of creosote compounds in clayey till, a field experiment. J. Contam. Hydrol. 41, 239–260 (2000)

    Article  Google Scholar 

  • Broholm, M.M., Arvin, E.: Biodegradation of phenols in a sandstone aquifer under aerobic conditions and mixed nitrate and iron reducing conditions. J. Contam. Hydrol. 44(3–4), 239–273 (2000)

    Google Scholar 

  • Broholm, M.M., Crouzet, C., Arvin, E.: Concurrent nitrate and Fe (III) reduction during anaerobic biodegradation of phenols in a sandstone aquifer. J. Contam. Hydrol. 44, 275–300 (2000)

    Article  Google Scholar 

  • Buitron, G., Koefoed, A., Capdeville, B.: Control of phenol biodegradation by using CO2 evolution rate as an activity indicator. Environ. Technol. 14, 227–236 (1993)

    Article  Google Scholar 

  • Bukowska, B., Goszczynska, K., Duda, W.: Effect of 4-cholro-2-methylphenoxyacetic acid and 2,4-dimethylphenol on human erythrocytes. Pestic. Biochem. Physiol. 77, 92–98 (2003)

    Article  Google Scholar 

  • Chiou, C.T., McGroddy, S.E., Kile, D.E.: Partition characteristics of polycyclic aromatic hydrocarbons on soils and sediments. Environ. Sci. Technol. 32, 264–269 (1998)

    Article  Google Scholar 

  • Fang, H.H.P., Zhou, G.M.: Interactions of methanogens and denitrifiers in degradation of phenols. J. Environ. Eng. 125(1), 57–63 (1999)

    Article  Google Scholar 

  • Fernández-Sanjuan, M., Lacorte, S., Rigol, A., Sahuquillo, A.: New quality-control materials for the determination of alkylphenols and alkylphenol ethoxylates in sewage sludge. Anal. Bioanal. Chem. 404(8), 2499–2505 (2012)

    Article  Google Scholar 

  • Fischer, S., Licha, T.: Quellen und Vorkommen kurzkettiger Alkylphenole. Grundwasser 18(1), 25–34 (2012)

    Article  Google Scholar 

  • Flyvbjerg, J., Arvin, E., Jensen, B.K., Olsen, S.K.: Microbial degradation of phenols and aromatic hydrocarbons in creosote-contaminated groundwater. J. Contam. Hydrol. 12, 133–150 (1993)

    Article  Google Scholar 

  • Giger, W., Brunner, P.H., Schaffner, C.: 4-Nonylphenol in sewage sludge: accumulation of toxic metabolites from nonionic surfactants. Science 225, 623–625 (1984)

    Article  Google Scholar 

  • Grbic-Galic, D.: Methanogenic transformation of aromatic hydrocarbons and phenols in groundwater aquifers. Geomicrobiol. J. 8, 167–200 (1990)

    Article  Google Scholar 

  • Häggblom, M.M., Rivera, M.D., Bossert, I.D., Togers, J.E., Young, L.Y.: Anaerobic biodegradation of para-cresol under three reducing conditions. Microb. Ecol. 20(1), 141–150 (1990)

    Article  Google Scholar 

  • Harrison, I., Williams, G.M., Higgo, J.J., Leader, R.U., Kim, A.W., Noy, D.J.: Microcosm studies of microbial degradation in a coal tar distillate plume. J. Contam. Hydrol. 53, 319–340 (2001)

    Article  Google Scholar 

  • Higgo, J.J.W., Nielsen, P.H., Bannon, M.P., Harrison, I., Christensen, T.H.: Effect of geochemical conditions on fate of organic compounds in groundwater. Environ. Geol. 27(4), 335–346 (1996)

    Article  Google Scholar 

  • Jeong, J.J., Kim, J.H., Kim, C.K., Hwang, I., Lee, K.: 3- and 4-alkylphenol degradation pathway in Pseudomonas sp. strain KL28: genetic organization of the lap gene cluster and substrate specificies of phenol hydroxylase and catechol 2,3-dioxygenase. Microbiology 149(11), 3265–3277 (2003)

    Article  Google Scholar 

  • Jones, K.H., Trudgill, P.W., Hopper, D.J.: 4-Ethylphenol metabolism by Aspergillus fumigatus. Appl. Environ. Microbiol. 60(6), 1978–1983 (1994)

    Google Scholar 

  • Jonsson, G., Stokke, T.U., Cavcic, A., Jorgensen, K.B., Beyer, J.: Characterization of alkylphenol metabolites in fish bile by enzymatic treatment and HPLC-fluorescence analysis. Chemosphere 71(7), 1392–1400 (2008)

    Article  Google Scholar 

  • Kazumi, J., Häggblom, M.M., Young, L.Y.: Degradation of monochlorinated and nonchlorinated aromatic compounds under iron-reducing conditions. Appl. Environ. Microbiol. 61(11), 4069–4073 (1995)

    Google Scholar 

  • King, M.W.G., Barker, J.F.: Migration and natural fate of a coal tar creosote plume. 1. Overview and plume development. J. Contam. Hydrol. 39, 249–279 (1999)

    Article  Google Scholar 

  • King, M.W.G., Barker, J.F., Devlin, F.F.: Migration and natural fate of a coal tar creosote plume. 2. Mass balance and biodegradation indicators. J. Contam. Hydrol. 39, 281–307 (1999)

    Article  Google Scholar 

  • Kobayashi, T., Hashinaga, T., Mikami, E., et al.: Methanogenic degradation of phenol and benzoate in acclimated sludges. Water Sci. Technol. 21, 55–65 (1989)

    Google Scholar 

  • Kohler, H.P.E., Kohler-Staub, D., Focht, D.D.: Degradation of 2-hydroxybiphenyl and 2,2-dihydroxybiphenyl by Pseudomonas sp. strain HBP1. Appl. Environ. Microbiol. 54(11), 2683–2688 (1988)

    Google Scholar 

  • Kortüm, G., Vogel, W., Andrussow, K.: Dissociation Constants of Organic Acids in Aqueous Solution, Teil 1. Butterworths, London (1961)

    Google Scholar 

  • Kuhr, P., Baron, U., Kunkel, R., Voigt, H.J., Wendland, F.: Bewertung und Optimierung von Grundwasserschutz-Maßnahmen nach der EU-Wasserrahmenrichtlinie. Umweltforschungsplan Nr. 3707 28 200. Abschlussdatum 30.01.2009 (2009)

  • Larter, S., Bennett, B.: Now you see them, now you don’t, now you might see them again! CSPG CSEG CLWS Convention (2011)

  • Lerner, D.N., Thornton, S.F., Spence, M.J., Banwart, S.A., Bottrell, S.H., Higgo, J.J., Mallinson, H.E.H., Pickup, R.W., Williams, G.M.: Ineffective natural attenuation of degradable organic compounds in a phenol-contaminated aquifer. Ground Water 38, 922–928 (2000)

    Article  Google Scholar 

  • Licha, T.: Short chained alkylphenols (SCAP) in groundwater—chemical analysis, adsorption mechanism and field cases. Dissertationsschrift, F-S-Universität Jena (2002)

  • Licha, T., Herfort, M., Sauter, M.: Phenolindex – ein sinnvoller Parameter für die Altlastenbewertung? Grundwasser 6(1), 8–14 (2001)

    Article  Google Scholar 

  • Licha, T., Dermietzel, J., Sauter, M.: Short chained alkyl phenols (SCAP)—chemical analysis and field studies. In: Schulz, H.D., Hadeler, A. (Hrsg.) GeoProc 2002. Forschungsberichte (DFG), S. 115–130. Wiley-VCH, Weinheim (2003). Kap. 9. ISBN 3-527-27766-8

    Google Scholar 

  • Lo, Y.C., Koziel, J.A., Cai, L., Hoff, S.J., Jenks, W.S., Xin, H.: Simultaneous chemical and sensory characterization of VOCs and semi-VOCs emitted from swine manure using SPME and multidimensional gas chromatography–mass spectrometry–olfactometry system. J. Environ. Qual. 37, 521–534 (2008)

    Article  Google Scholar 

  • Londry, K.L., Fedorak, P.M.: Use of fluorinated compounds to detect aromatic metabolites from m-cresol in a methanogenic consortium: evidence for a demethylation reaction. Appl. Environ. Microbiol. 59(7), 2229–2238 (1993)

    Google Scholar 

  • Lovley, D.R., Baedecker, M.J., Lonergan, D.J.: Oxidation of aromatic contaminants coupled to microbial iron reduction. Nature 339, 297–300 (1989)

    Article  Google Scholar 

  • Means, J.C., Wood, S.G., Hassett, J.J., Banwart, W.L.: Sorption of polynuclear aromatic hydrocarbons by sediments and soils. Environ. Sci. Tehnol. 14(12), 1524–1528 (1980)

    Article  Google Scholar 

  • Meylan, W.M., Howard, P.H.: Atom/fragment contribution method for estimating octanol–water partition coefficients. J. Pharm. Sci. 84(1), 83–92 (1995)

    Article  Google Scholar 

  • Montgomery, J.H., Welkom, L.M.: Groundwater Chemicals Desk References. Chelsea, Lewis (1990)

    Google Scholar 

  • Müller, J.G., Middaugh, D.P., Lantz, S.E., Chapman, P.J.: Biodegradation of creosote and pentachlorophenol in contaminated groundwater: chemical and biological assessment. Appl. Environ. Microbiol. 57, 1277–1285 (1991)

    Google Scholar 

  • Müller, J.A., Galushko, A.S., Kappler, A., Schink, B.: Anaerobic degradation of m-cresol by Desulfobacterium cetonicum is initiated by formation of 3-hydroxybenzylsuccinate. Arch. Microbiol. 172, 287–294 (1999)

    Article  Google Scholar 

  • Nielsen, P.H., Christensen, T.H.: Variability of biological degradation of phenolic hydrocarbons in an aerobic aquifer determined by laboratory batch experiments. J. Contam. Hydrol. 17(1), 55–67 (1994)

    Article  Google Scholar 

  • O’Conner, O.A., Young, L.Y.: Effects of six different functional groups and their position on the bacterial metabolism of monosubstituted phenols under anaerobic conditions. Environ. Sci. Technol. 30(5), 1419–1428 (1996)

    Article  Google Scholar 

  • Pearce, P.J., Simkins, R.J.J.: Acid strength of some substituted picric acids. Can. J. Chem. 46, 241–248 (1968)

    Article  Google Scholar 

  • Pickup, R.W., Rhodes, G., Alamillo, M.L., Mallinson, H.E., Thornton, S.F., Lerner, D.N.: Microbiological analysis of multi-level borehole samples from a contaminated groundwater system. J. Contam. Hydrol. 53(3–4), 269–284 (2001)

    Article  Google Scholar 

  • Puig-Grajales, L., Tan, N.G., van der Zee, F., Razo-Flores, E., Field, J.A.: Anaerobic biodegadability of alkylphenols and fuel oxygenates in the presence of alternative electron acceptors. Appl. Microbiol. Biotechnol. 54, 692–697 (2000)

    Article  Google Scholar 

  • Ramanand, K., Suflita, J.M.: Anaerobic degradation of m-cresol in anoxic aquifer slurries: carboxylation reactions in a sulphate-reducing bacterial enrichment. Appl. Environ. Microbiol. 57(6), 1689–1695 (1991)

    Google Scholar 

  • Sabljic, A., Guesten, H., Verhaar, H., Hermens, J.: QSAR modelling of soil sorption. Improvements and systematics of logKOC vs. logKOW correlations. Chemosphere 31, 4489–4514 (1995)

    Article  Google Scholar 

  • Santos, A., Yustos, P., Rodriguez, S., Garcia-Ochoa, F.: Wet oxidation of phenol, cresols and nitrophenols catalyzed by activated carbon in acid and basic media. Appl. Catal. B, Environ. 65(3–4), 269–281 (2006)

    Article  Google Scholar 

  • Sauter, M., Licha, T.: Use of short chained alkylphenols (SCAP) in analysis of transport behaviour of oil contaminated groundwater. J. Agric. Sci. 7(2), 29–37 (2002)

    Google Scholar 

  • Schultz, T.W.: The use of the ionization constant (pKa) in selecting models of toxicity of phenols. Ecotoxicol. Environ. Saf. 14(2), 178–183 (1987)

    Article  Google Scholar 

  • Schönekerl, S., Hüsers, N., Wiedemann, C., Heide, P., Werner, P.: Abschlussbericht zum LABO-Vorhaben Altlastenbezogene Bewertungs- und Analyseempfehlungen für kurzkettige Alkylphenole. Projektnr. LFP 2009 B 2.09 (2010)

  • Serjeant, E.P., Dempsey, B.: Ionisation Constants of Organic Acids in Aqueous Solutions, IUPAC Data. Pergamon, Oxford (1979)

    Google Scholar 

  • Sharma, N.K., Philip, L., Bhallamudi, S.M.: Aerobic degradation of phenolics and aromatic hydrocarbons in presence of cyanide. Bioresour. Technol. 121, 263–273 (2012)

    Article  Google Scholar 

  • Shibata, A., Inoue, Y., Katayama, A.: Aerobic and anaerobic biodegradation of phenol derivatives in various paddy soils. Sci. Total Environ. 367, 979–987 (2006)

    Article  Google Scholar 

  • Sixt, S.: Methoden zur Abschätzung umweltrelevanter physikalisch-chemischer und ökotoxikologischer Eigenschaften organischer Substanzen aus der Molekülstruktur. Herbert Utz Verlag, München (1998). ISBN 978-3-89675-358-8

    Google Scholar 

  • Spence, M.J., Bottrell, S.H., Higgo, J.J., Harrison, I., Fallick, A.E.: Denitrification and phenol degradation in a contaminated aquifer. J. Contam. Hydrol. 53(3–1), 305–318 (2001)

    Article  Google Scholar 

  • Tewari, Y.B., Miller, M.M., Wasik, S.P., Martire, D.E.: Aqueous solubility and octanol/water partition coefficient of organic compounds at 25 °C. J. Chem. Eng. Data 27(4), 451–454 (1982)

    Article  Google Scholar 

  • Teutsch, G., Grathwohl, P., Schiedek, T.: Literaturstudie zum natürlichen Rückhalt/Abbau von Schadstoffen im Grundwasser. LfU-Altlastenberichte, 35/97 (1997)

  • Thomas, A.O., Lester, J.N.: The microbial remediation of former gasworks sites: a review. Environ. Technol. 14(1), 1–24 (1993)

    Article  Google Scholar 

  • Thornton, S.F., Quigley, S., Spence, M.J., Banwart, S.A., Bottrell, S., Lerner, D.N.: Processes controlling the distribution and natural attenuation of dissolved phenolic compounds in a deep sandstone aquifer. J. Contam. Hydrol. 53(3–4), 233–267 (2001)

    Article  Google Scholar 

  • EG-Wasserrahmenrichtlinie 2000/60/EG. EG-Amtsblatt Nr. L 327/1 (2000)

  • Umweltbundesamt: Gemeinsamer Stoffdatenpool Bund/Länder. www.gsbl.de (01/2013)

  • Van Schie, P.M., Young, L.Y.: Biodegradation of phenol: mechanisms and applications. Bioremediation J. 4(1), 1–18 (2000)

    Article  Google Scholar 

  • Varhanickova, D., Shiu, W.Y., Mackay, D.: Aqueous solubilities of alkylphenols and methoxyphenols at 25 °C. J. Chem. Eng. Data 40, 448–451 (1995)

    Article  Google Scholar 

  • Wang, Y.S., Barlaz, M.A.: Anaerobic biodegradability of alkylbenzenes and phenol by landfill derived microorganisms. FEMS Microbiol. Ecol. 25(4), 405–418 (1998)

    Article  Google Scholar 

  • Wang, Y.T., Suidan, M.T., Pfeffer, J.T., Najm, I.: Effects of some alkyl phneols on methanogenic degradation of phenol. Appl. Environ. Microbiol. 54(5), 1277–1279 (1988)

    Google Scholar 

  • Williams, G.M., Pickup, R.W., Thornton, S.F., Lerner, D.N., Mallinson, H.E.H., Moore, Y., White, C.: Biogeochemical characterisation of a coal tar distillate plume. J. Contam. Hydrol. 53, 175–197 (2001)

    Article  Google Scholar 

  • Wöhlbrand, L., Wilkes, H., Halder, T., Rabus, R.: Anaerobic degradation of p-ethylphenol by Aromatoleum aromaticum strain EbN1: pathway, regulation, and involved proteins. J. Bacteriol. 190(16), 5699–5709 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steffi Fischer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fischer, S., Licha, T. & Markelova, E. Transportverhalten kurzkettiger Alkylphenole (SCAP) im Grundwasser und in der Umwelt. Grundwasser 19, 119–126 (2014). https://doi.org/10.1007/s00767-013-0233-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00767-013-0233-5

Keywords

Navigation