Skip to main content

Advertisement

Log in

Design of therapeutically improved analogue of the antimicrobial peptide, indolicidin, using a glycosylation strategy

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Indolicidin is a member of cathelicidin family which displays broad spectrum antimicrobial activity. Severe toxicity and aggregation propensity associated with indolicidin pose a huge limitation to its probable therapeutic application. We are reporting the use of glycosylation strategy to design an analogue of indolicidin and subsequently explore structural and functional effects of sugar on it. Our study led to the design of a potent antibacterial glycosylated peptide, [βGlc-T9,K7]indolicidin, which showed decreased toxicity against erythrocytes and macrophage cells and thus a higher therapeutic selectivity. The incorporation of sugar also increased the solubility of the peptide. The mode of bacterial killing, functional stability, LPS binding, and cytokine inhibitory potential of the peptide, however, seemed unaffected upon glycosylation. Absence of significant changes in structure upon glycosylation accounts for the possibly retained functions and mode of action of the peptide. Our report thus presents the designing of an indolicidin analogue with improved therapeutic potential by substituting aromatic amino acid with glycosylated amino acid as a promising strategy for the first time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

CARA:

Computer-aided resonance assignment

DCC:

N,N′-Dicyclohexyl-carbodiimide

DIPEA:

Di-isopropyl ethylamine

DMEM:

Dulbecco’s modified Eagle’s medium

DMF:

Dimethyl formamide

DMSO:

Dimethyl sulfoxide

DPC:

Dodecylphosphorylcholine

Fmoc:

9-Fluorenylmethyloxycarbonyl

HBTU:

(2-(1H-benzotraiazol-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate

HEPES:

4-(2-Hydroxyethyl)-1-piperazine ethanesulfonic acid

HOBt:

1-Hydroxybenzotriazole

HPLC:

High-performance liquid chromatography

IL6:

Interleukin 6

LB:

Lysogeny broth (Luria–Bertani broth)

LBP:

Lipopolysaccharide-binding protein

LPS:

Lipopolysaccharide

MALDI-TOF:

Matrix-assisted laser desorption and ionization

MHC:

Minimum haemolytic concentration

NMP:

N-Methyl-2-pyrrolidone

RMSD:

Root-mean-square deviation

SEM:

Scanning electron microscopy

TOCSY:

Total correlation spectroscopy

TNF-α:

Tumor necrosis factor alpha

TFE:

Tri-fluoroethanol

TFA:

Trifluoroacetic acid

References

  • Agrawal P, Gupta U, Jain NKÃ (2007) Glycoconjugated peptide dendrimers-based nanoparticulate system for the delivery of chloroquine phosphate. Biomaterials 28:3349–3359

    CAS  PubMed  Google Scholar 

  • Ahmad I, Perkins WR, Lupan DM, Selsted ME, Janoff AS (1995) Liposomal entrapment of the neutrophil-derived peptide indolicidin endows it with in vivo antifungal activity. BBA Biomembr 1237:109–114

    Google Scholar 

  • Ando S, Mitsuyasu K, Soeda Y, Hidaka M, Ito Y, Matsubara K, Shindo M, Uchida Y, Aoyagi H (2010) Structure–activity relationship of indolicidin, a Trp-rich antibacterial peptide. J Pept Sci 16:171–177

    CAS  PubMed  Google Scholar 

  • Andreotti AH, Kahne D (1993) Effects of glycosylation on peptide backbone conformation. J Am Chem Soc 115:3352–3353

    CAS  Google Scholar 

  • Bagger HL, Fuglsang CC, Westh P (2006) Hydration of a glycoprotein: relative water affinity of peptide and glycan moieties. Eur Biophys J 35:367–371

    CAS  PubMed  Google Scholar 

  • Bednarska NG, Wren BW, Willcocks SJ (2017) The importance of the glycosylation of antimicrobial peptides: natural and synthetic approaches. Drug Discov Today 22:919–926

    CAS  PubMed  Google Scholar 

  • Bera A, Singh S, Nagaraj R, Vaidya T (2003) Induction of autophagic cell death in Leishmania donovani by antimicrobial peptides. Mol Biochem Parasitol 127:23–35

    CAS  PubMed  Google Scholar 

  • Bera S, Ghosh A, Sharma S, Debnath T, Giri B, Bhunia A (2015) Probing the role of Proline in the antimicrobial activity and lipopolysaccharide binding of indolicidin. J Colloid Interface Sci 452:148–159

    CAS  PubMed  Google Scholar 

  • Bhadra D, Yadav AK, Bhadra S, Jain NK (2005) Glycodendrimeric nanoparticulate carriers of primaquine phosphate for liver targeting. Int J Pharm 295:221–233

    CAS  PubMed  Google Scholar 

  • Bosques CJ, Tschampel SM, Woods RJ, Imperiali B (2004) Effects of glycosylation on peptide conformation: a synergistic experimental and computational study. J Am Chem Soc 126:8421–8425

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bowdish DME, Davidson DJ, Scott MG, Hancock REW (2005) Immunomodulatory activities of small host defense peptides. Antimicrob Agents Chemother 49:1727–1732

    CAS  PubMed  PubMed Central  Google Scholar 

  • Case DA, Ben-Shalom IY, Brozell SR, Cerutti DS, Cheatham TE III, Cruzeiro VWD, Darden TA, Duke RE, Ghoreishi D, Gilson MK, Gohlke H, Goetz AW, Greene D, Harris R, Homeyer N, Izadi S, Kovalenko A, Kurtzman T, Lee TS, LeGrand S, Li P, Lin C, Liu J, Luchko T, Luo R, Mermelstein DJ, Merz KM, Miao Y, Monard G, Nguyen C, Nguyen H, Omelyan I, Onufriev A, Pan F, Qi R, Roe DR, Roitberg A, Sagui C, Schott-Verdugo S, Shen J, Simmerling CL, Smith J, Salomon-Ferrer R, Swails J, Walker RC, Wang J, Wei H, Wolf RM, Wu X, Xiao L, York DM, Kollman PA (2014) Amber. University of California, San Francisco

    Google Scholar 

  • Chang CD, Meienhofer J (1978) Solid-phase peptide synthesis using mild base cleavage of nαfluorenylmethyloxycarbonylamino acids, exemplified by a synthesis of dihydrosomatostatin. Int J Pept Protein Res 11:246–249

    CAS  PubMed  Google Scholar 

  • Coltart DM, Royyuru AK, Williams LJ, Glunz PW, Sames D, Kuduk SD, Schwarz JB, Chen XT, Danishefsky SJ, Live DH (2002) Principles of mucin architecture: structural studies on synthetic glycopeptides bearing clustered mono-, di-, tri-, and hexasaccharide glycodomains. J Am Chem Soc 124:9833–9844

    CAS  PubMed  Google Scholar 

  • Edwards IA, Elliott AG, Kavanagh AM, Zuegg J, Blaskovich MAT, Cooper MA (2016) Contribution of amphipathicity and hydrophobicity to the antimicrobial activity and cytotoxicity of β-hairpin peptides. ACS Infect Dis 2:442–450

    CAS  PubMed  PubMed Central  Google Scholar 

  • Falla TJ, Karunaratne DN, Hancock REW (1996) Membranes and bioenergetics: mode of action of the antimicrobial peptide indolicidin mode of action of the antimicrobial peptide indolicidin. J Biol Chem 271:19298–19303

    CAS  PubMed  Google Scholar 

  • Friedrich CL, Moyles D, Beveridge TJ, Hancock RE (2000) Antibacterial action of structurally diverse cationic peptides on gram-positive bacteria. Antimicrob Agents Chemother 44:2086–2092

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gordon YJ, Romanowski EG, McDermott AM (2005) A review of antimicrobial peptides and their therapeutic potential as anti-infective drugs. Curr Eye Res 30:505–515

    CAS  PubMed  PubMed Central  Google Scholar 

  • Griebenow KAI, Sola RJ (2009) Effects of glycosylation on the stability of protein pharmaceuticals. J Pharm Sci 98:1223–1245

    PubMed  PubMed Central  Google Scholar 

  • Güntert P (2004) Automated NMR structure calculation with CYANA. Protein NMR Tech 278:353–378

    Google Scholar 

  • Haney EF, Wu BC, Lee K, Hilchie AL, Hancock REW (2017) Aggregation and its influence on the immunomodulatory activity of synthetic innate defense regulator peptides. Cell Chem Biol 24:969–980

    CAS  PubMed  Google Scholar 

  • Hartmann M, Berditsch M, Hawecker J, Ardakani MF, Gerthsen D, Ulrich AS (2010) Damage of the bacterial cell envelope by antimicrobial peptides gramicidin S and PGLa as revealed by transmission and scanning electron microscopy. Antimicrob Agents Chemother 54:3132–3142

    CAS  PubMed  PubMed Central  Google Scholar 

  • Høiberg-Nielsen R, Fuglsang CC, Arleth L, Westh P (2006) Interrelationships of glycosylation and aggregation kinetics for Peniophora lycii phytase. Biochemistry 45:5057–5066

    PubMed  Google Scholar 

  • Høiberg-Nielsen R, Westh P, Arleth L (2009) The effect of glycosylation on interparticle interactions and dimensions of native and denatured phytase. Biophys J 96:153–161

    PubMed  Google Scholar 

  • Hsu JCY, Yip CM (2007) Molecular dynamics simulations of indolicidin association with model lipid bilayers. Biophys J 92:L100–L102

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hsu CH, Chen C, Jou ML, Lee AYL, Lin YC, Yu YP, Huang WT, Wu SH (2005) Structural and DNA-binding studies on the bovine antimicrobial peptide, indolicidin: evidence for multiple conformations involved in binding to membranes and DNA. Nucleic Acids Res 33:4053–4064

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huang X, Barchi JJ, Lung FT, Roller PP, Nara PL, Muschik J, Garrity RR (1997) Glycosylation affects both the three-dimensional structure and antibody binding properties of the HIV-1 IIIB GP120 peptide RP135. Biochemistry 2960:10846–10856

    Google Scholar 

  • Ishikawa D, Kikkawa H, Ogino K, Hirabayashi Y, Oku N, Taki T (1998) GD1alpha-replica peptides functionally mimic GD1alpha, an adhesion molecule of metastatic tumor cells, and suppress the tumor metastasis. FEBS Lett 441:20–24

    CAS  PubMed  Google Scholar 

  • Jain K, Kesharwani P, Gupta U, Jain NK (2010) Dendrimer toxicity: let’ s meet the challenge. Int J Pharm 394:122–142

    CAS  PubMed  Google Scholar 

  • Kaur KJ, Khurana S, Salunke DM (1997) Topological analysis of the functional mimicry between a peptide and a carbohydrate moiety. J Biol Chem 272:5539–5543

    CAS  PubMed  Google Scholar 

  • Keller R (2004) The computer aided resonance assignment tutorial, 1st edn. Verlag, CANTINA

    Google Scholar 

  • Knudsen JD, Fuursted K, Raber S, Espersen F, Frimodt-møller N, Hemother ANAGC (2000) Pharmacodynamics of glycopeptides in the mouse peritonitis model of Streptococcus pneumoniae or Staphylococcus aureus infection. Antimicrob Agents Chemother 44:1247–1254

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kramer JR, Schmidt NW, Mayle KM, Kamei DT, Wong GCL, Deming TJ (2015) Reinventing cell penetrating peptides using glycosylated methionine sulfonium ion sequences. ACS Cent Sci 1:83–88

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kustanovich I, Shalev DE, Mikhlin M, Gaidukov L, Mor A (2002) Structural requirements for potent versus selective cytotoxicity for antimicrobial dermaseptin S4 derivatives. Biochemistry 277:16941–16951

    CAS  Google Scholar 

  • Ladokhin AS, Selsted ME, White SH (1999) CD spectra of indolicidin antimicrobial peptides suggest turns, not polyproline helix. Biochemistry 38:12313–12319

    CAS  PubMed  Google Scholar 

  • Lee HS, Qi Y, Im W (2015) Effects of N-glycosylation on protein conformation and dynamics: protein Data Bank analysis and molecular dynamics simulation study. Sci Rep 5:1–7

    Google Scholar 

  • Lehar J, Krueger A, Avery W, Heilbut A, Johansen L (2009) Synergistic drug combinations improve therapeutic selectivity. Nat Biotechnol 27:659–666

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liang R, Andreotti AH, Kahne D (1995) Sensitivity of glycopeptide conformation to carbohydrate chain length. J Am Chem Soc 117:10395–10396

    CAS  Google Scholar 

  • Lingwood C, Mylvaganam M, Minhas F, Binnington B, Branch DR, Pomès R (2005) The sulfogalactose moiety of sulfoglycosphingolipids serves as a mimic of tyrosine phosphate in many recognition processes: prediction and demonstration of Src homology 2 domain/sulfogalactose binding. J Biol Chem 280:12542–12547

    CAS  PubMed  Google Scholar 

  • Lv Y, Wang J, Gao H, Wang Z, Dong N, Ma Q, Shan A (2014) Antimicrobial properties and membrane-active mechanism of a potential α-helical antimicrobial derived from cathelicidin PMAP-36. PLoS One 9:e86364

    PubMed  PubMed Central  Google Scholar 

  • Marotta NP, Lin YH, Lewis YE, Ambroso MR, Zaro BW, Roth MT, Arnold DB, Langen R, Pratt MR (2016) O-GlcNAc modification blocks the aggregation and toxicity of the Parkinson’s disease associated protein α-synuclein. Nat Chem 7:913–920

    Google Scholar 

  • Matsubara T (2012) Potential of peptides as inhibitors and mimotopes: selection of carbohydrate-mimetic peptides from phage display libraries. J Nucleic Acids 2012:740982

    PubMed  PubMed Central  Google Scholar 

  • Matsuzaki K (2009) Control of cell selectivity of antimicrobial peptides. Biochim Biophys Acta Biomembr 1788:1687–1692

    CAS  Google Scholar 

  • Miura Y, Sakaki A, Kamihira M, Iijima S, Kobayashi K (2006) A globotriaosylceramide (Gb3Cer) mimic peptide isolated from phage display library expressed strong neutralization to Shiga toxins. Biochim Biophys Acta Gen Subj 1760:883–889

    CAS  Google Scholar 

  • Moore RA, Bates NC, Hancock RE (1986) Interaction of polycationic antibiotics with Pseudomonas aeruginosa lipopolysaccharide and lipid A studied by using dansyl-polymyxin. Antimicrob Agents Chemother 29:496–500

    CAS  PubMed  PubMed Central  Google Scholar 

  • Moradi SV, Hussein WM, Varamini P, Simerska P, Toth I (2016) Glycosylation, an effective synthetic strategy to improve the bioavailability of therapeutic peptides. Chem Sci 7:2492–2500

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nan YH, Park KH, Park Y, Jeon YJ, Kim Y, Park IS, Hahm KS, Shin SY (2009a) Investigating the effects of positive charge and hydrophobicity on the cell selectivity, mechanism of action and anti-inflammatory activity of a Trp-rich antimicrobial peptide indolicidin. FEMS Microbiol Lett 292:134–140

    CAS  PubMed  Google Scholar 

  • Nan YH, Bang JK, Shin SY (2009b) Design of novel indolicidin-derived antimicrobial peptides with enhanced cell specificity and potent anti-inflammatory activity. Peptides 30:832–838

    CAS  PubMed  Google Scholar 

  • Neale C, Hsu JCY, Yip CM, Pomès R (2014) Indolicidin binding induces thinning of a lipid bilayer. Biophys J 106:29–31

    Google Scholar 

  • Podorieszach AP, Huttunen-Hennelly HEK (2010) The effects of tryptophan and hydrophobicity on the structure and bioactivity of novel indolicidin derivatives with promising pharmaceutical potential. Org Biomol Chem 8:1679–1687

    CAS  PubMed  Google Scholar 

  • Rathinakumar R, Walkenhorst WF, Wimley WC (2010) Broad-spectrum antimicrobial peptides by rational combinatorial design and high-throughput screening: the importance of interfacial activity. J Am Chem Soc 131:7609–7617

    Google Scholar 

  • Robinson WE, McDougall B, Tran D, Selsted ME (1998) Anti-HIV-1 activity of indolicidin, an antimicrobial peptide from neutrophils. J Leukoc Biol 63:94–100

    CAS  PubMed  Google Scholar 

  • Rokitskaya TI, Kolodkin NI, Kotova EA, Antonenko YN (2011) Indolicidin action on membrane permeability: carrier mechanism versus pore formation. Biochim Biophys Acta Biomembr 1808:91–97

    CAS  Google Scholar 

  • Roth BL, Poot M, Yue ST, Millard PJ, Roth BL, Poot M, Yue ST, Millard PJ (1997) Bacterial viability and antibiotic susceptibility testing with SYTOX green nucleic acid stain. Bacterial viability and antibiotic susceptibility testing with SYTOX green nucleic acid stain. Appl Environ Microbiol 63:2421–2431

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rozek A, Friedrich CL, Hancock REW (2000) Structure of the bovine antimicrobial peptide indolicidin bound to dodecylphosphocholine and sodium dodecyl sulfate micelles. Biochemistry 39:15765–15774

    CAS  PubMed  Google Scholar 

  • Savjani KT, Gajjar AK, Savjani JK (2012) Drug solubility: importance and enhancement techniques. ISRN Pharm 2012:1–10

    Google Scholar 

  • Sawyer JG, Martin NL, Hancock REW (1988) Interaction of macrophage cationic proteins with the outer membrane of pseudomonas aeruginosa. Infect Immun 56:693–698

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schluesener HJ, Radermacher S, Melms A, Jung S (1993) Leukocytic antimicrobial peptides kill autoimmune T cells. J Neuroimmunol 47:199–202

    CAS  PubMed  Google Scholar 

  • Scott MG, Vreugdenhil ACE, Buurman WA, Hancock REW, Gold MR (2000) Cutting edge: cationic antimicrobial peptides block the binding of lipopolysaccharide (LPS) to LPS binding protein. J Immunol 164:549–553

    CAS  PubMed  Google Scholar 

  • Selsted ME, Novotny MJ, Morris WL, Tang YQ, Smith W, Cullor JS (1992) Indolicidin, a novel bactericidal tridecapeptide amide from neutrophils. J Biol Chem 267:4292–4295

    CAS  PubMed  Google Scholar 

  • Sinclair AM, Elliott S (2005) Glycoengineering: the effect of glycosylation on the properties of therapeutic proteins. J Pharm Sci 94:1626–1635

    CAS  PubMed  Google Scholar 

  • Solá RJ, Griebenow K (2011) Glycosylation of therapeutic proteins: an effective strategy to optimiza efficacy. BioDrugs 24:9–21

    Google Scholar 

  • Stewart EM, Aquilina JA, Easterbrook-smith SB, Murphy-durland D, Jacobsen C, Moestrup S, Wilson MR (2007) Effects of glycosylation on the structure and function of the extracellular. Biochemistry 46:1412–1422

    CAS  PubMed  Google Scholar 

  • Subbalakshmi C, Krishnakumari V, Nagaraj R, Sitaram N (1996) Requirements for antibacterial and hemolytic activities in the bovine neutrophil derived 13-residue peptide indolicidin. FEBS Lett 395:48–52

    CAS  PubMed  Google Scholar 

  • Subbalakshmi C, Bikshapathy E, Sitaram N, Nagaraj R (2000) Antibacterial and hemolytic activities of single tryptophan analogs of indolicidin. Biochem Biophys Res Commun 274:714–716

    CAS  PubMed  Google Scholar 

  • Tagashira M, Iijima H, Toma K (2003) An NMR study of O-glycosylation induced structural changes in the α-helix of calcitonin. Glycoconj J 19:43–52

    Google Scholar 

  • Takikawa M, Kikkawa H, Asai T, Yamaguchi N, Ishikawa D, Tanaka M, Ogino K, Taki T, Oku N (2000) Suppression of GD1α ganglioside-mediated tumor metastasis by liposomalized WHW-peptide. FEBS Lett 466:381–384

    CAS  PubMed  Google Scholar 

  • Talat S, Thiruvikraman M, Kumari S, Kaur KJ (2011) Glycosylated analogs of formaecin I and drosocin exhibit differential pattern of antibacterial activity. Glycoconj J 28:537–555

    CAS  PubMed  Google Scholar 

  • Tams JW, Vind J, Welinder KG (1999) Adapting protein solubility by glycosylation. N-Glycosylation mutants of Coprinus cinereus peroxidase in salt and organic solutions. Biochim Biophys Acta Protein Struct Mol Enzymol 1432:214–221

    CAS  Google Scholar 

  • Tsai C, Hsu N, Wang C, Lu C, Chang Y, Tsai HG, Ruaan R (2009) Coupling molecular dynamics simulations with experiments for the rational design of indolicidin-analogous antimicrobial peptides. J Mol Biol 392:837–854

    CAS  PubMed  Google Scholar 

  • Tsai CW, Ruaan RC, Liu CI (2012) Adsorption of antimicrobial indolicidin-derived peptides on hydrophobic surfaces. Langmuir 28:10446–10452

    CAS  PubMed  Google Scholar 

  • Ueda T, Tomita K, Notsu Y, Ito T, Fumoto M, Takakura T, Nagatome H, Takimoto A, Mihara S, Togame H et al (2009) Chemoenzymatic synthesis of glycosylated glucagon-like peptide 1: effect of glycosylation on proteolytic resistance and in vivo blood glucose-lowering activity. J Am Chem Soc 14:6237–6245

    Google Scholar 

  • Wu WG, Pasternack L, Huang DH, Koeller KM, Lin CC, Seitz O, Wong CH (1999) Structural study on O-glycopeptides: glycosylation-induced conformational changes of O-GlcNAc, O-LacNAc, O-Sialyl-LacNAc, and O-Sialyl- Lewis-X peptides of the mucin domain of MAdCAM-1. J Am Chem Soc 121:2409–2417

    CAS  Google Scholar 

  • Wüthrich K (1983) Sequential individual resonance assignments in the 1H-NMR spectra of polypeptides and proteins. Biopolymers 22:131–138

    PubMed  Google Scholar 

  • Xu Y, Zhang K, Reghu S, Lin Y, Chan-Park MB, Liu XW (2019) Synthesis of antibacterial glycosylated polycaprolactones bearing imidazoliums with reduced hemolytic activity. Biomacromol 20:949–958

    CAS  Google Scholar 

  • Yeh IC, Ripoll DR, Wallqvist A (2012) Free energy difference in indolicidin attraction to eukaryotic and prokaryotic model cell membranes. J Phys Chem B 116:3387–3396

    CAS  PubMed  Google Scholar 

  • Zaman S Bin, Hussain MA, Nye R, Mehta V, Mamun KT, Hossain N (2017) A review on antibiotic resistance: alarm bells are ringing. Cureus. 9:e1403

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Department of Science and Technology (Project no.: SR/S1/OC-63/2012), India for financial support. We thank Department of Biotechnology (DBT), Government of India and ICGEB New Delhi for the NMR facility. We thank Ms. Shanta Sen for help with HRMS data. We also thank Ms. Rekha Rani for help with SEM studies and Dr. Sharad Vashisht for discussions regarding structural studies of glycopeptide.

Author information

Authors and Affiliations

Authors

Contributions

KK conceived the idea of present work. KK and RD designed the experiments. RD performed the experiments. KK and RD analyzed the data and wrote the manuscript. NSB and PA performed the NMR studies.

Corresponding author

Correspondence to Kanwal J. Kaur.

Ethics declarations

Conflict of interest

Authors declare that they have no conflicts of interest.

Research involving human participants and/or animals

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Handling Editor: P. Meffre.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

726_2019_2779_MOESM1_ESM.docx

NMR chemical shift values of peptides [T9,K7]indolicidin and [βGlc-T9,K7]indolicidin; PDB and BMRB accession codes of peptides; HPLC profiles of purified indolicidin, [T9,K7]indolicidin and [βGlc-T9,K7]indolicidin; HRMS spectra of indolicidin, [T9,K7]indolicidin and [βGlc-T9,K7]indolicidin; Anti-biofilm activity of peptides (DOCX 603 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dwivedi, R., Aggarwal, P., Bhavesh, N.S. et al. Design of therapeutically improved analogue of the antimicrobial peptide, indolicidin, using a glycosylation strategy. Amino Acids 51, 1443–1460 (2019). https://doi.org/10.1007/s00726-019-02779-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-019-02779-2

Keywords

Navigation