Skip to main content
Log in

l-Arginine promotes protein synthesis and cell growth in brown adipocyte precursor cells via the mTOR signal pathway

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

l-Arginine has been reported to enhance brown adipose tissue developments in fetal lambs of obese ewes, but the underlying mechanism is unknown. The present study tested the hypothesis that l-arginine stimulates growth and development of brown adipocyte precursor cells (BAPCs) through activation of mammalian target of rapamycin cell signaling. BAPCs isolated from fetal lambs at day 90 of gestation were incubated   for 6 h in arginine-free DMEM, and then cultured in DMEM with concentrations of 50, 100, 200, 500 or 1000 μmol l-arginine/L for 24–96 h. Cell proliferation, protein turnover, the mammalian target of rapamycin (mTOR) signaling pathway and pre-adipocyte differentiation markers were determined. l-arginine treatment enhanced (P < 0.05) BAPC growth and protein synthesis, while inhibiting proteolysis in a dose-dependent manner. Compared with 50 and 100 μmol/L (the concentrations of arginine in the maternal plasma of obese ewes), 200 μmol l-arginine/L (the concentrations of arginine in the maternal plasma of obese ewes receiving arginine supplementation) increased (P < 0.05) the abundances of phosphorylated mTOR, P70S6K and 4EBP1, as well as the abundances of PGC1α, UCP1, BMP7 and PRDM16. These novel findings indicate that increasing extra-cellular arginine concentration from 50 to 200 µmol/L activates mTOR cell signaling in BAPCs and enhances their growth and development in a dose-dependent manner. Our results provide a mechanism for arginine supplementation to enhance the development of brown adipose tissue in fetal lambs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

BAPCs:

Brown adipocyte precursor cells

BAT:

Brown adipose tissue

BMP7:

Bone morphogenetic protein 7

mTOR:

Mammalian target of rapamycin

p:

Phosphorylated

P70S6K :

Ribosomal protein S6 kinase

PGC1α:

PPARγ coactivator 1 alpha

PRDM16:

PRD1-BF1-RIZ1 homologous domain containing protein 16

UCP1:

Uncoupling protein 1

4E-BP1:

4E-binding protein 1

References

  • Alexander G (1987) Quantitative development of adipose tissue in foetal sheep. Aust J Biol Sci 31:489–503

    Article  Google Scholar 

  • Cannon B, Nedergaard J (2004) Brown adipose tissue: function and physiological significance. Physiol Rev 84:277–359

    Article  CAS  PubMed  Google Scholar 

  • Chantranupong L, Scaria SM, Saxton RA et al (2016) The CASTOR proteins are arginine sensors for the mTORC1 pathway. Cell 165:153–164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Corl BA, Odle J, Niu XM et al (2008) Arginine activates intestinal p70(S6 k) and protein synthesis in piglet rotavirus enteritis. J Nutr 138:24–29

    CAS  PubMed  Google Scholar 

  • Gesta S, Tseng YH, Kahn CR (2007) Developmental origin of fat: tracking obesity to its source. Cell 131:242–256

    Article  CAS  PubMed  Google Scholar 

  • Jobgen WJ, Meininger CJ, Jobgen SC et al (2009) Dietary l-arginine supplementation reduces white-fat gain and enhances skeletal muscle and brown fat masses in diet-induced obese rats. J Nutr 139:230–237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kajimura S, Seale P, Kubota K et al (2009) Initiation of myoblast to brown fat switch by a PRDM16-C/EBP-beta transcriptional complex. Nature 460:1154–1158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kajimura S, Seale P, Spiegelman BM (2010) Transcriptional control of brown fat development. Cell Metab 11:257–262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karamitri A, Shore AM, Docherty K et al (2009) Combinatorial transcription factor regulation of the cyclic AMP-response element on the Pgc-1alpha promoter in white 3T3-L1 and brown HIB-1B preadipocytes. J Biol Chem 284:20738–20752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knauf U, Tschopp C, Gram H (2001) Negative regulation of protein translation by mitogen-activated protein kinase-interacting kinases 1 and 2. Mol Cell Biol 21:5500–5511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kong X, Tan B, Yin Y et al (2012) l-Arginine stimulates the mTOR signaling pathway and protein synthesis in porcine trophectoderm cells. J Nutr Biochem 23:1178–1183

    Article  CAS  PubMed  Google Scholar 

  • Lassala A, Bazer FW, Cudd TA et al (2010) Parenteral administration of l-arginine prevents fetal growth restriction in undernourished ewes. J Nutr 140:1242–1248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma X, Zhang H, Yuan L et al (2011) CREBL2, interacting with CREB, induces adipogenesis in 3T3-L1 adipocytes. Biochem J 439:27–38

    Article  CAS  PubMed  Google Scholar 

  • Ma X, Ding W, Wang J et al (2012) LOC66273 isoform 2, a novel protein highly expressed in white adipose tissue, induces adipogenesis in 3T3-L1 cells. J Nutr 142:448–455

    Article  CAS  PubMed  Google Scholar 

  • Ma X, Hou Y, Dahanayaka S et al (2015) Technical note: isolation and characterization of ovine brown adipocyte precursor cells. J Anim Sci 93:2094–2099

    Article  CAS  PubMed  Google Scholar 

  • McCoard S, Sales F, Wards N et al (2013) Parenteral administration of twin-bearing ewes with l-arginine enhances the birth weight and brown fat stores in sheep. Springerplus 2:684

    Article  PubMed  PubMed Central  Google Scholar 

  • McCoard S, Wards N, Koolaard J et al (2014) The effect of maternal arginine supplementation on the development of the thermogenic program in the ovine fetus. Animal Prod Sci 54:1843–1847

    Article  CAS  Google Scholar 

  • McCoard SA, Sales FA, Sciascia QL (2016) Amino acids in sheep production. Front Biosci (Elite Ed) 8:264–288

    Article  Google Scholar 

  • Meijer AJ, Dubbelhuis PF (2004) Amino acid signaling and the integration of metabolism. Biochem Biophys Res Commun 313:397–403

    Article  CAS  PubMed  Google Scholar 

  • Murphy VE, Smith R, Giles WB et al (2006) Endocrine regulation of human fetal growth: the role of the mother, placenta, and the fetus. Endocrine Rev 27:141–169

    Article  Google Scholar 

  • Rhoads JM, Wu G (2009) Glutamine, arginine, and leucine signaling in the intestine. Amino Acids 37:111–122

    Article  CAS  Google Scholar 

  • Rhoads JM, Niu XM, Odle J et al (2006) Role of mTOR signaling in intestinal cell migration. Am J Physiol Gastrointest Liver Physiol 291:G510–G517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rhoads JM, Corl BA, Harrell R et al (2007) Intestinal ribosomal p70S6 K signaling is increased in piglet rotavirus enteritis. Am J Physiol Gastrointest Liver Physiol 292:G913–G922

    Article  CAS  PubMed  Google Scholar 

  • Rhoads JM, Liu YY, Niu XM et al (2008) Arginine stimulates cdx2-transformed intestinal epithelial cell migration via a mechanism requiring both nitric oxide and phosphorylation of p70 S6 kinase. J Nutr 138:1652–1657

    CAS  PubMed  Google Scholar 

  • Satterfield MC, Wu G (2001) Growth and development of brown adipose tissue: significance and nutritional regulation. Front Biosci 16:1589–1608

    Article  Google Scholar 

  • Satterfield MC, Wu G (2011) Brown adipose tissue growth and development: significance and nutritional regulation. Front Biosci (Landmark Ed) 16:1589–1608

    Article  CAS  Google Scholar 

  • Satterfield MC, Dunlap KA, Keisler DH et al (2013) Arginine nutrition and fetal brown adipose tissue development in nutrient-restricted sheep. Amino Acids 45:489–499

    Article  CAS  PubMed  Google Scholar 

  • Seale P, Kajimura S, Yang W et al (2007) Transcriptional control of brown fat determination by PRDM16. Cell Metab 6:38–54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seale P, Bjork B, Yang W et al (2008) PRDM16 controls a brown fat/skeletal muscle switch. Nature 454:961–967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suryawan A, Davis TA (2011) Regulation of protein synthesis by amino acids in muscle of neonates. Front Biosci (Landmark Ed) 16:1445–1460

    Article  CAS  PubMed Central  Google Scholar 

  • Suryawan A, O’Connor PMJ, Bush JA et al (2009) Differential regulation of protein synthesis by amino acids and insulin in peripheral and visceral tissues of neonatal pigs. Amino Acids 37:105–110

    Article  Google Scholar 

  • Symonds ME, Mostyn A, Pearce S et al. (2003) Endocrine and nutritional regulation of fetal adipose tissue development. J Endocrinol 179:293–299

    Article  CAS  PubMed  Google Scholar 

  • Timmons JA, Wennmalm K, Larsson O et al (2007) Myogenic gene expression signature establishes that brown and white adipocytes originate from distinct cell lineages. Proc Natl Acad Sci USA 104:4401–4406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu G (2009) Amino acids: metabolism, functions, and nutrition. Amino Acids 37:1–17

    Article  PubMed  Google Scholar 

  • Wu G (2013) Functional amino acids in nutrition and health. Amino Acids 45:407–411

    Article  CAS  PubMed  Google Scholar 

  • Wu Z, Satterfield MC, Bazer FW et al (2012) Regulation of brown adipose tissue development and white fat reduction by l-arginine. Curr Opin Clin Nutr Metab Care 15:529–538

    Article  CAS  PubMed  Google Scholar 

  • Wu G, Bazer FW, Satterfield MC et al (2013) Impacts of arginine nutrition on embryonic and fetal development in mammals. Amino Acids 45:241–256

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This project was funded in part by China Scholarship Council, Texas A&M AgriLife Research (H-8200), the National Natural Science Foundation of China (Nos. 31528018, 31272448 and 31472101), the National Basic Research Program of China (973 Program, 2013CB117301), and the 111 Project (B16044).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoyao Wu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical statement

This study involved the culture of an existing cell line and did not require an animal use protocol.

Informed consent

This study did not require informed consent.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, X., Han, M., Li, D. et al. l-Arginine promotes protein synthesis and cell growth in brown adipocyte precursor cells via the mTOR signal pathway. Amino Acids 49, 957–964 (2017). https://doi.org/10.1007/s00726-017-2399-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-017-2399-0

Keywords

Navigation