Skip to main content
Log in

Creatine kinase in cell cycle regulation and cancer

  • Review Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

The phosphocreatine-creatine kinase (CK) shuttle system is increasingly recognized as a fundamental mechanism for ATP homeostasis in both excitable and non-excitable cells. Many intracellular processes are ATP dependent. Cell division is a process requiring a rapid rate of energy turnover. Cell cycle regulation is also a key point to understanding the mechanisms underlying cancer progression. It has been known for about 40 years that aberrant CK levels are associated with various cancers and for over 30 years that CK is involved in mitosis regulation. However, the underlying molecular mechanisms have not been investigated sufficiently until recently. By maintaining ATP at sites of high-energy demand, CK can regulate cell cycle progression by affecting the intracellular energy status as well as by influencing signaling pathways that are essential to activate cell division and cytoskeleton reorganization. Aberrant CK levels may impair cell viability under normal or stressed conditions and induce cell death. The involvement of CK in cell cycle regulation and cellular energy metabolism makes it a potential diagnostic biomarker and therapeutic target in cancer. To understand the multiple physiological/pathological functions of CK, it is necessary to identify CK-binding partners and regulators including proteins, non-coding RNAs and participating endogenous small molecular weight chemical compounds. This review will focus on molecular mechanisms of CK in cell cycle regulation and cancer progression. It will also discuss the implications of recent mechanistic studies, the emerging problems and future challenges of the multifunctional enzyme CK.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Andley UP, Malone JP, Townsend RR (2014) In vivo substrates of the lens molecular chaperones αA-crystallin and αB-crystallin. PLoS One 9:e95507

    Article  PubMed  PubMed Central  Google Scholar 

  • Bessman SP, Geiger PJ (1981) Transport of energy in muscle: the phosphorylcreatine shuttle. Science 211:448–452

    Article  CAS  PubMed  Google Scholar 

  • Burklen TS, Hirschy A, Wallimann T (2007) Brain-type creatine kinase BB-CK interacts with the Golgi Matrix Protein GM130 in early prophase. Mol Cell Biochem 297:53–64

    Article  PubMed  Google Scholar 

  • Cai L, Tu BP (2012) Driving the cell cycle through metabolism. Annu Rev Cell Dev Biol 28:59–87

    Article  CAS  PubMed  Google Scholar 

  • Cande WZ (1982) Nucleotide requirements for anaphase chromosome movements in permeabilized mitotic cells: anaphase B but not anaphase A requires ATP. Cell 28:15–22

    Article  CAS  PubMed  Google Scholar 

  • Cande WZ (1983) Creatine kinase role in anaphase chromosome movement. Nature 304:557–558

    Article  CAS  PubMed  Google Scholar 

  • Chance B et al (1986) Multiple controls of oxidative metabolism in living tissues as studied by phosphorus magnetic resonance. Proc Natl Acad Sci USA 83:9458–9462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Z, Zhao TJ, Li J, Gao YS, Meng FG, Yan YB, Zhou HM (2011) Slow skeletal muscle myosin-binding protein-C (MyBPC1) mediates recruitment of muscle-type creatine kinase (CK) to myosin. Biochem J 436:437–445

    Article  CAS  PubMed  Google Scholar 

  • de Graaf RA, van Kranenburg A, Nicolay K (2000) In vivo 31P-NMR diffusion spectroscopy of ATP and phosphocreatine in rat skeletal muscle. Biophys J 78:1657–1664

    Article  PubMed  PubMed Central  Google Scholar 

  • Deldicque L, Theisen D, Bertrand L, Hespel P, Hue L, Francaux M (2007) Creatine enhances differentiation of myogenic C2C12 cells by activating both p38 and Akt/PKB pathways. Am J Physiol–Cell Physiol 293:C1263–C1271

    Article  CAS  PubMed  Google Scholar 

  • Diguet N et al (2011) Muscle creatine kinase deficiency triggers both actin depolymerization and desmin disorganization by advanced glycation end products in dilated cardiomyopathy. J Biol Chem 286:35007–35019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dowben R, Shay J, Fuseler J, Eckert B, Koons S (1982) The association of creatine phosphokinase with the mitotic spindle. Cell and Muscle Motility. Springer, US, pp 103–119

    Chapter  Google Scholar 

  • Dzeja P, Terzic A (2009) Adenylate kinase and AMP signaling networks: metabolic monitoring, signal communication and body energy sensing. Int J Mol Sci 10:1729–1772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dzeja PP, Bortolon R, Perez-Terzic C, Holmuhamedov EL, Terzic A (2002) Energetic communication between mitochondria and nucleus directed by catalyzed phosphotransfer. Proc Natl Acad Sci USA 99:10156–10161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dzeja PP, Chung S, Faustino RS, Behfar A, Terzic A (2011) Developmental enhancement of adenylate kinase-AMPK metabolic signaling axis supports stem cell cardiac differentiation. PLoS One 6:e19300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eckert BS, Koons SJ, Schantz AW, Zobel CR (1980) Association of creatine phosphokinase with the cytoskeleton of cultured mammalian cells. J Cell Biol 86:1–5

    Article  CAS  PubMed  Google Scholar 

  • Ellington WR (2001) Evolution and physiological roles of phosphagen systems. Annu Rev Physiol 63:289–325

    Article  CAS  PubMed  Google Scholar 

  • Epel D (1963) The effects of carbon monoxide inhibition on ATP level and the rate of mitosis in the sea urchin egg. J Cell Biol 17:315–319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feng S, Zhao TJ, Zhou HM, Yan YB (2007) Effects of the single point genetic mutation D54G on muscle creatine kinase activity, structure and stability. Int J Biochem Cell Biol 39:392–401

    Article  CAS  PubMed  Google Scholar 

  • Fiske CH, Subbarow Y (1928) The isolation and function of phosphocreatine. Science 67:169–170

    Article  CAS  PubMed  Google Scholar 

  • Forsey KE, Ellis PJ, Sargent CA, Sturmey RG, Leese HJ (2013) Expression and localization of creatine kinase in the preimplantation embryo. Mol Reprod Dev 80:185–192

    Article  CAS  PubMed  Google Scholar 

  • From AH, Zimmer SD, Michurski SP, Mohanakrishnan P, Ulstad VK, Thoma WJ, Ugurbil K (1990) Regulation of the oxidative phosphorylation rate in the intact cell. Biochemistry 29:3731–3743

    Article  CAS  PubMed  Google Scholar 

  • Fukumitsu K, Fujishima K, Yoshimura A, Wu YK, Heuser J, Kengaku M (2015) Synergistic action of dendritic mitochondria and creatine kinase maintains ATP homeostasis and actin dynamics in growing neuronal dendrites. J Neurosci 35:5707–5723

    Article  CAS  PubMed  Google Scholar 

  • Gerlach G, Hofer HW (1986) Interaction of immobilized phosphofructokinase with soluble muscle proteins. Biochim Biophys Acta 881:398–404

    Article  CAS  PubMed  Google Scholar 

  • Gyulai L, Roth Z, Leigh JS Jr, Chance B (1985) Bioenergetic studies of mitochondrial oxidative phosphorylation using 31phosphorus NMR. J Biol Chem 260:3947–3954

    CAS  PubMed  Google Scholar 

  • Hein MY et al (2015) A human interactome in three quantitative dimensions organized by stoichiometries and abundances. Cell 163:712–723

    Article  CAS  PubMed  Google Scholar 

  • Hepler PK, Palevitz BA (1986) Metabolic inhibitors block anaphase A in vivo. J Cell Biol 102:1995–2005

    Article  CAS  PubMed  Google Scholar 

  • Hoag GN, Franks CR, DeCoteau WE (1978) Creatine kinase isoenzymes in serum of patients with cancer of various organs. Clin Chem 24:1654

    CAS  PubMed  Google Scholar 

  • Hornemann T, Stolz M, Wallimann T (2000) Isoenzyme-specific interaction of muscle-type creatine kinase with the sarcomeric M-line is mediated by NH2 -terminal lysine charge-clamps. J Cell Biol 149:1225–1234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hornemann T, Kempa S, Himmel M, Haye K, Furst DO, Wallimann T (2003) Muscle-type creatine kinase interacts with central domains of the M-band proteins myomesin and M-protein. J Mol Biol 332:877–887

    Article  CAS  PubMed  Google Scholar 

  • Huddleston HG, Wong KK, Welch WR, Berkowitz RS, Mok SC (2005) Clinical applications of microarray technology: creatine kinase B is an up-regulated gene in epithelial ovarian cancer and shows promise as a serum marker. Gynecol Oncol 96:77–83

    Article  CAS  PubMed  Google Scholar 

  • Jacobus WE (1985) Theoretical support for the heart phosphocreatine energy transport shuttle based on the intracellular diffusion limited mobility of ADP. Biochem Biophys Res Commun 133:1035–1041

    Article  CAS  PubMed  Google Scholar 

  • Kaldis P, Kamp G, Piendl T, Wallimann T (1997) Functions of creatine kinase isoenzymes in spermatozoa. Adv Dev Biochem 5:275–312

    CAS  Google Scholar 

  • Kemp GJ, Meyerspeer M, Moser E (2007) Absolute quantification of phosphorus metabolite concentrations in human muscle in vivo by 31P MRS: a quantitative review. NMR Biomed 20:555–565

    Article  CAS  PubMed  Google Scholar 

  • Knull HR, Bronstein WW, DesJardins P, Niehaus WG Jr (1980) Interaction of selected brain glycolytic enzymes with an F-actin-tropomyosin complex. J Neurochem 34:222–225

    Article  CAS  PubMed  Google Scholar 

  • Koons SJ, Eckert BS, Zobel CR (1982) Immunofluorescence and inhibitor studies on creatine kinase and mitosis. Exp Cell Res 140:401–409

    Article  CAS  PubMed  Google Scholar 

  • Kraft T, Hornemann T, Stolz M, Nier V, Wallimann T (2000) Coupling of creatine kinase to glycolytic enzymes at the sarcomeric I-band of skeletal muscle: a biochemical study in situ. J Muscle Res Cell Motil 21:691–703

    Article  CAS  PubMed  Google Scholar 

  • Kuiper JW, Pluk H, Oerlemans F, van Leeuwen FN, de Lange F, Fransen J, Wieringa B (2008) Creatine kinase-mediated ATP supply fuels actin-based events in phagocytosis. PLoS Biol 6:e51

    Article  PubMed  PubMed Central  Google Scholar 

  • Kuiper JWP et al (2009) Local ATP generation by brain-type creatine kinase (CK-B) facilitates cell motility. PLoS One 4:e5030

    Article  PubMed  PubMed Central  Google Scholar 

  • Lange S, Auerbach D, McLoughlin P, Perriard E, Schafer BW, Perriard JC, Ehler E (2002) Subcellular targeting of metabolic enzymes to titin in heart muscle may be mediated by DRAL/FHL-2. J Cell Sci 115:4925–4936

    Article  CAS  PubMed  Google Scholar 

  • Lederer WH, Gerstbrein HL (1976) Creatine kinase isoenzyme BB activity in serum of a patient with gastric cancer. Clin Chem 22:1748–1749

    CAS  PubMed  Google Scholar 

  • Leitner A, Faini M, Stengel F, Aebersold R (2015) Crosslinking and mass spectrometry: an integrated technology to understand the structure and function of molecular machines. Trends Biochem Sci. doi:10.1016/j.tibs.2015.10.008

    PubMed  Google Scholar 

  • Li XH et al (2013) Knockdown of creatine kinase B inhibits ovarian cancer progression by decreasing glycolysis. Int J Biochem Cell Biol 45:979–986

    Article  PubMed  Google Scholar 

  • Loo JM et al (2015) Extracellular metabolic energetics can promote cancer progression. Cell 160:393–406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mahajan VB, Pai KS, Lau A, Cunningham DD (2000) Creatine kinase, an ATP-generating enzyme, is required for thrombin receptor signaling to the cytoskeleton. Proc Natl Acad Sci USA 97:12062–12067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manos P, Bryan GK (1993) Cellular and subcellular compartmentation of creatine kinase in brain. Dev Neurosci 15:271–279

    Article  CAS  PubMed  Google Scholar 

  • Mejean C, Pons F, Benyamin Y, Roustan C (1989) Antigenic probes locate binding sites for the glycolytic enzymes glyceraldehyde-3-phosphate dehydrogenase, aldolase and phosphofructokinase on the actin monomer in microfilaments. Biochem J 264:671–677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller EE, Evans AE, Cohn M (1993) Inhibition of rate of tumor growth by creatine and cyclocreatine. Proc Natl Acad Sci U S A 90:3304–3308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mitsuyama H, Yokoshiki H, Irie Y, Watanabe M, Mizukami K, Tsutsui H (2013) Involvement of the phosphatidylinositol kinase pathway in augmentation of ATP-sensitive K+ channel currents by hypo-osmotic stress in rat ventricular myocytes. Can J Physiol Pharmacol 91:686–692

    Article  CAS  PubMed  Google Scholar 

  • Mooney SM et al (2011) Creatine kinase brain overexpression protects colorectal cells from various metabolic and non-metabolic stresses. J Cell Biochem 112:1066–1075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moreno-Sanchez R, Marin-Hernandez A, Saavedra E, Pardo JP, Ralph SJ, Rodriguez-Enriquez S (2014) Who controls the ATP supply in cancer cells? Biochemistry lessons to understand cancer energy metabolism. Int J Biochem Cell Biol 50:10–23

    Article  CAS  PubMed  Google Scholar 

  • Mulvaney PT et al (1998) Cyclocreatine inhibits stimulated motility in tumor cells possessing creatine kinase. Int J Cancer 78:46–52

    Article  CAS  PubMed  Google Scholar 

  • Neumann D, Schlattner U, Wallimann T (2003) A molecular approach to the concerted action of kinases involved in energy homoeostasis. Biochem Soc T 31:169–174

    Article  CAS  Google Scholar 

  • O’Connor RS, Steeds CM, Wiseman RW, Pavlath GK (2008) Phosphocreatine as an energy source for actin cytoskeletal rearrangements during myoblast fusion. J Physiol 586:2841–2853

    Article  PubMed  PubMed Central  Google Scholar 

  • Otero AS (1997) Copurification of vimentin, energy metabolism enzymes, and a MER5 homolog with nucleoside diphosphate kinase. Identification of tissue-specific interactions. J Biol Chem 272:14690–14694

    Article  CAS  PubMed  Google Scholar 

  • Pang B et al (2009) Ubiquitous mitochondrial creatine kinase is overexpressed in the conditioned medium and the extract of LNCaP lineaged androgen independent cell lines and facilitates prostate cancer progression. Prostate 69:1176–1187

    Article  CAS  PubMed  Google Scholar 

  • Patra S et al (2012) A short review on creatine-creatine kinase system in relation to cancer and some experimental results on creatine as adjuvant in cancer therapy. Amino Acids 42:2319–2330

    Article  CAS  PubMed  Google Scholar 

  • Pederson T (2003) Historical review: an energy reservoir for mitosis, and its productive wake. Trends Biochem Sci 28:125–129

    Article  CAS  PubMed  Google Scholar 

  • Perng MD, Cairns L, van den IJssel P, Prescott A, Hutcheson AM, Quinlan RA (1999) Intermediate filament interactions can be altered by HSP27 and alphaB-crystallin. J Cell Sci 112(Pt 13):2099–2112

    CAS  PubMed  Google Scholar 

  • Prabhakaran V, Nealon DA, Henderson AR (1979) Interaction between human IgG and human creatine kinase isoenzyme-1 in serum: a route for the intravascular catabolism of creatine kinase-1? Clin Chem 25:112–116

    CAS  PubMed  Google Scholar 

  • Qian XL, Li YQ, Gu F, Liu FF, Li WD, Zhang XM, Fu L (2012) Overexpression of ubiquitous mitochondrial creatine kinase (uMtCK) accelerates tumor growth by inhibiting apoptosis of breast cancer cells and is associated with a poor prognosis in breast cancer patients. Biochem Biophys Res Commun 427:60–66

    Article  CAS  PubMed  Google Scholar 

  • Sahlin K, Harris RC (2011) The creatine kinase reaction: a simple reaction with functional complexity. Amino Acids 40:1363–1367

    Article  CAS  PubMed  Google Scholar 

  • Saks V et al (2007) The Creatine kinase phosphotransfer network: thermodynamic and kinetic considerations, the impact of the mitochondrial outer membrane and modelling approaches. In: Creatine and creatine kinase in health and disease, p 27–65

  • Savabi F (1994) Interaction of creatine kinase and adenylate kinase systems in muscle cells. Mol Cell Biochem 133–134:145–152

    Article  PubMed  Google Scholar 

  • Schlattner U, Tokarska-Schlattner M, Wallimann T (2006) Mitochondrial creatine kinase in human health and disease. Biochim Biophys Acta Mol Basis Dis 1762:164–180

    Article  CAS  Google Scholar 

  • Sekrecka-Belniak A, Balcerzak M, Buchet R, Pikula S (2010) Active creatine kinase is present in matrix vesicles isolated from femurs of chicken embryo: implications for bone mineralization. Biochem Bioph Res Co 391:1432–1436

    Article  CAS  Google Scholar 

  • Shin J-B et al (2007) Hair bundles are specialized for ATP delivery via creatine kinase. Neuron 53:371–386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Silver RB, Saft MS, Taylor AR, Cole RD (1983) Identification of nonmitochondrial creatine kinase enzymatic activity in isolated sea urchin mitotic apparatus. J Biol Chem 258:13287–13291

    CAS  PubMed  Google Scholar 

  • Silverman LM, Dermer GB, Zweig MH, Van Steirteghem AC, Tokes ZA (1979) Creatine kinase BB: a new tumor-associated marker. Clin Chem 25:1432–1435

    CAS  PubMed  Google Scholar 

  • Simionescu-Bankston A et al (2015) Creatine kinase B is necessary to limit myoblast fusion during myogenesis. Am J Physiol Cell Physiol 308:C919–c931

    Article  PubMed  PubMed Central  Google Scholar 

  • Stolz M, Wallimann T (1998) Myofibrillar interaction of cytosolic creatine kinase (CK) isoenzymes: allocation of N-terminal binding epitope in MM-CK and BB-CK. J Cell Sci 111:1207–1216

    CAS  PubMed  Google Scholar 

  • Storey KB, Hochachka PW (1974) Activation of muscle glycolysis: a role for creatine phosphate in phosphofructokinase regulation. FEBS Lett 46:337–339

    Article  CAS  PubMed  Google Scholar 

  • Suginta W, Karoulias N, Aitken A, Ashley RH (2001) Chloride intracellular channel protein CLIC4 (p64H1) binds directly to brain dynamin I in a complex containing actin, tubulin and 14-3-3 isoforms. Biochem J 359:55–64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sumitani S, Goya K, Testa JR, Kouhara H, Kasayama S (2002) Akt1 and Akt2 differently regulate muscle creatine kinase and myogenin gene transcription in insulin-induced differentiation of C2C12 myoblasts. Endocrinology 143:820–828

    Article  CAS  PubMed  Google Scholar 

  • Thompson RJ, Rubery ED, Jones HM (1980) Radioimmunoassay of serum creatine kinase-BB as a tumour marker in breast cancer. Lancet 2:673–675

    Article  CAS  PubMed  Google Scholar 

  • Tombes RM, Farr A, Shapiro BM (1988) Sea urchin sperm creatine kinase: the flagellar isozyme is a microtubule-associated protein. Exp Cell Res 178:307–317

    Article  CAS  PubMed  Google Scholar 

  • Turner DC, Wallimann T, Eppenberger HM (1973) A protein that binds specifically to the M-line of skeletal muscle is identified as the muscle form of creatine kinase. Proc Natl Acad Sci USA 70:702–705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Brussel E, Yang JJ, Seraydarian MW (1983) Isozymes of creatine kinase in mammalian cell cultures. J Cell Physiol 116:221–226

    Article  PubMed  Google Scholar 

  • Vander Heiden MG, Cantley LC, Thompson CB (2009) Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324:1029–1033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Venter G et al (2015) Submembranous recruitment of creatine kinase B supports formation of dynamic actin-based protrusions of macrophages and relies on its C-terminal flexible loop. Eur J Cell Biol 94:114–127

    Article  CAS  PubMed  Google Scholar 

  • Vicart P et al (1998) A missense mutation in the αB-crystallin chaperone gene causes a desmin-related myopathy. Nat Genet 20:92–95

    Article  CAS  PubMed  Google Scholar 

  • Wallimann T (1994) Dissecting the role of creatine kinase. Curr Biol 4:42–46

    Article  CAS  PubMed  Google Scholar 

  • Wallimann T, Hemmer W (1994) Creatine-kinase in nonmuscle tissues and cells. Mol Cell Biochem 133:193–220

    Article  PubMed  Google Scholar 

  • Wallimann T, Schlösser T, Eppenberger HM (1984) Function of M-line bound creatine kinase as intramyofibrillar ATP regerator at the receiving end of the phosphorylcreatine shuttle in muscle. J Biol Chem 259:5238–5246

    CAS  PubMed  Google Scholar 

  • Wallimann T, Wyss M, Brdiczka D, Nicolay K, Eppenberger HM (1992) Intracellular compartmentation, structure and function of creatine kinase isozymes in tissues with high and fluctuating energy demands: the “phosphocreatine circuit” for cellular energy homeostasis. Biochem J 281:21–40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wallimann T, Tokarska-Schlattner M, Schlattner U (2011) The creatine kinase system and pleiotropic effects of creatine. Amino Acids 40:1271–1296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Warburg O (1956) On the origin of cancer cells. Science 123:309–314

    Article  CAS  PubMed  Google Scholar 

  • Watts DC (1973) Creatine kinase (adenosine 5′-triphosphate creatine phosphotransferase). The enzymes. Academic Press, New York

    Google Scholar 

  • Yamamichi H et al (2001) Creatine kinase gene mutation in a patient with muscle creatine kinase deficiency. Clin Chem 47:1967–1973

    CAS  PubMed  Google Scholar 

  • Zarghami N, Yu H, Diamandis EP, Sutherland DJ (1995) Quantification of creatine kinase BB isoenzyme in tumor cytosols and serum with an ultrasensitive time-resolved immunofluorometric technique. Clin Biochem 28:243–253

    Article  CAS  PubMed  Google Scholar 

  • Zhang S, Nemutlu E, Terzic A, Dzeja P (2014) Adenylate kinase isoform network: a major hub in cell energetics and metabolic signaling. In: Systems Biology of Metabolic and Signaling Networks. Springer, p 145–162

  • Zhao TJ, Yan YB, Liu Y, Zhou HM (2007) The generation of the oxidized form of creatine kinase is a negative regulation on muscle creatine kinase. J Biol Chem 282:12022–12029

    Article  CAS  PubMed  Google Scholar 

  • Zurmanova J, Difato F, Malacova D, Mejsnar J, Stefl B, Zahradnik I (2007) Creatine kinase binds more firmly to the M-band of rabbit skeletal muscle myofibrils in the presence of its substrates. Mol Cell Biochem 305:55–61

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The author thanks Dr. T Wallimann, Dr. R Harris and Prof. HP Gong for critical reading and helpful suggestions, Dr. H-M Zhou for 10 year’s collaboration into CK folding and function, and all former and present laboratory members involved in CK projects. The various CK projects undertaken in the author’s laboratory were supported by Grants 2012CB917304 and 2010CB912402 from the Ministry of Science and Technology of China, Grants 30500084 and 30970559 from the National Natural Science Foundation of China and support from State Key Laboratory of Membrane Biology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-Bin Yan.

Ethics declarations

Conflict of interest

The author declares that he has no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by the author.

Additional information

Handling Editor: T. Wallimann and R. Harris.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, YB. Creatine kinase in cell cycle regulation and cancer. Amino Acids 48, 1775–1784 (2016). https://doi.org/10.1007/s00726-016-2217-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-016-2217-0

Keywords

Navigation