Skip to main content
Log in

Advanced asymmetric synthesis of (1R,2S)-1-amino-2-vinylcyclopropanecarboxylic acid by alkylation/cyclization of newly designed axially chiral Ni(II) complex of glycine Schiff base

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Asymmetric synthesis of (1R,2S)-1-amino-2-vinylcyclopropanecarboxylic acid (vinyl-ACCA) is in extremely high demand due to the pharmaceutical importance of this tailor-made, sterically constrained α-amino acid. Here we report the development of an advanced procedure for preparation of the target amino acid via two-step SN2 and SN2′ alkylation of novel axially chiral nucleophilic glycine equivalent. Excellent yields and diastereoselectivity coupled with reliable and easy scalability render this method of immediate use for practical synthesis of (1R,2S)-vinyl-ACCA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Scheme 2
Scheme 3
Scheme 4

Similar content being viewed by others

References

  • Aceña JL, Sorochinsky AE, Soloshonok V (2014) Asymmetric synthesis of α-amino acids via homologation of Ni(II) complexes of glycine Schiff bases. Part 3: Michael addition reactions and miscellaneous transformations. Amino Acids 46:2047–2073

    Article  PubMed  Google Scholar 

  • Adams DO, Yang SF (1979) Ethylene biosynthesis: identification of 1-aminocyclopropane-1-carboxylic acid as an intermediate in the conversion of methionine to ethylene. Proc Nat Acad Sci USA 76:170–174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Agarwal A, Zhang B, Olek E, Robison H, Robarge L, Deshpande M (2012) Rapid and sharp decline in HCV upon monotherapy with NS3 protease inhibitor, ACH-1625. Antivir Ther 17:1533–1539

    Article  CAS  PubMed  Google Scholar 

  • Alami A, Calmes M, Daunis J, Jacquier R (1993) 1-Aminocyclopropanecarboxylic acids: properties and synthesis. Bull Soc Chim Fr 130:5–24

    CAS  Google Scholar 

  • Basiuk VA, Gromovoy TY, Chuiko AA, Soloshonok VA, Kukhar VP (1992) A novel approach to the synthesis of symmetric optically active 2,5-dioxopiperazines. Synthesis 449–451

  • Beaulieu PL, Gillard J, Bailey MD, Boucher C, Duceppe J-S, Simoneau B, Wang X-J, Zhang L, Grozinger K, Houpis I, Farina V, Heimroth H, Krueger T, Schnaubelt J (2005) Synthesis of (1R,2S)-1-amino-2-vinylcyclopropanecarboxylic acid (vinyl-ACCA) derivatives: key intermediates for the preparation of inhibitors of the hepatitis C virus NS3 protease. J Org Chem 70:5869–5879

    Article  CAS  PubMed  Google Scholar 

  • Belyk KM, Xiang B, Bulger PG, Leonard WR Jr, Balsells J, Yin J, Chen CY (2010) Enantioselective synthesis of (1R,2S)-1-amino-2-vinylcyclopropanecarboxylic acid ethyl ester (Vinyl-ACCA-OEt) by asymmetric phase-transfer catalyzed cyclopropanation of (E)-N-phenylmethyleneglycine ethyl ester. Org Process Res Dev 14:692–700

    Article  CAS  Google Scholar 

  • Bergagnini M, Fukushi K, Han J, Shibata N, Roussel C, Ellis TK, Aceña JL, Soloshonok VA (2014) NH-type of chiral Ni(II) complexes of glycine Schiff base: design, structural evaluation, reactivity and synthetic applications. Org Biomol Chem 12:1278–1291

    Article  CAS  PubMed  Google Scholar 

  • Brackmann F, de Meijere A (2007) Natural occurrence, syntheses, and applications of cyclopropyl-group-containing α-amino acids. 1. 1-Aminocyclopropanecarboxylic acid and other 2,3-methanoamino acids. Chem Rev 107:4493–4537

    Article  CAS  PubMed  Google Scholar 

  • Bravo P, Farina A, Frigerio M, Meille SV, Viani F, Soloshonok VA (1994) New fluorinated chiral synthons. Tetrahedron Asymmetry 5:987–1004

    Article  CAS  Google Scholar 

  • Burgess K, Ho K-K, Moye-Sherman D (1994) Asymmetric syntheses of 2,3-methanoamino acids. Synlett 575–583

  • Burroughs LF (1957) 1-Aminocyclopropane-1-carboxylic acid: a new amino-acid in perry pears and cider apples. Nature 179:360–361

    Article  CAS  PubMed  Google Scholar 

  • Cai M, Cai C, Mayorov AV, Xiong C, Cabello CM, Soloshonok VA, Swift JR, Trivedi D, Hruby VJ (2004) Biological and conformational study of β-substituted prolines in MT-II template: steric effects leading to human MC5 receptor selectivity. J Peptide Res 63:116–131

    Article  CAS  Google Scholar 

  • Cativiela C, Ordóñez M (2009) Recent progress on the stereoselective synthesis of cyclic quaternary α-amino acids. Tetrahedron Asymmetry 20:1–63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cativiela C, Díaz-de-Villegas MD, Jiménez AI (1995) A simple synthesis of (-)-(1S,2R)-allocoronamic acid in its enantiomerically pure form. Tetrahedron Asymmetry 6:177–182

    Article  CAS  Google Scholar 

  • Dorizon P, Su G, Ludvig G, Nikitina L, Paugam R, Ollivier J, Salaün J (1999) Stereoselective synthesis of highly functionalized cyclopropanes. Application to the asymmetric synthesis of (1S,2S)-2,3-methanoamino acids. J Org Chem 64:4712–4724

    Article  CAS  PubMed  Google Scholar 

  • Ellis TK, Martin CH, Tsai GM, Ueki H, Soloshonok VA (2003a) Efficient synthesis of sterically constrained symmetrically α, α-disubstituted α-amino acids under operationally convenient conditions. J Org Chem 68:6208–6214

    Article  CAS  PubMed  Google Scholar 

  • Ellis TK, Hochla VM, Soloshonok VA (2003b) Efficient synthesis of 2-aminoindane-2-carboxylic acid via dialkylation of nucleophilic glycine equivalent. J Org Chem 68:4973–4976

    Article  CAS  PubMed  Google Scholar 

  • Ellis TK, Ueki H, Yamada T, Ohfune Y, Soloshonok VA (2006) Design, synthesis, and evaluation of a new generation of modular nucleophilic glycine equivalents for the efficient synthesis of sterically constrained a-amino acids. J Org Chem 71:8572–8578

    Article  CAS  PubMed  Google Scholar 

  • Fox ME, Lennon IC, Farina V (2007) Catalytic asymmetric synthesis of ethyl (1R,2S)-dehydrocoronamate. Tetrahedron Lett 48:945–948

    Article  CAS  Google Scholar 

  • Gante J (1994) Peptidomimetics-Tailored Enzyme Inhibitors. Angew Chem Int Ed 33:1699–1720

    Article  Google Scholar 

  • Gentile I, Buonomo AR, Zappulo E, Borgia G (2015) Discontinued drugs in 2012–2013: hepatitis C virus infection. Expert Opin Investig Drugs 24:239–251

    Article  CAS  PubMed  Google Scholar 

  • Hoffman NE, Yang SF, Ichihara A, Sakamura S (1982) Stereospecific conversion of 1-aminocyclopropanecarboxylic acid to ethylene by plant tissues. Conversion of stereoisomers of 1-amino-2-ethylcyclopropanecarboxylic acid to 1-butene. Plant Physiol 70:195–199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hruby VJ, Balse PM (2000) Conformational and topographical considerations in designing agonist peptidomimetics from peptide leads. Curr Med Chem 7:945–970

    Article  CAS  PubMed  Google Scholar 

  • Hruby VJ, Li G, Haskell-Luevano C, Shenderovich M (1997) Design of peptides, proteins, and peptidomimetics in chi space. Biopolymers 43:219–266

    Article  CAS  PubMed  Google Scholar 

  • Jiang Y, Andrews SW, Condroski KR, Buckman B, Serebryany V, Wenglowsky S, Kennedy AL, Madduru MR, Wang B, Lyon M, Doherty GA, Woodard BT, Lemieux C, Geck Do M, Zhang H, Ballard J, Vigers G, Brandhuber BJ, Stengel P, Josey JA, Beigelman L, Blatt L, Seiwert SD (2014) Discovery of danoprevir (ITMN-191/R7227), a highly selective and potent inhibitor of hepatitis C virus (HCV) NS3/4A protease. J Med Chem 57:1753–1769

    Article  CAS  PubMed  Google Scholar 

  • Jiménez JM, Rifé J, Ortuño RM (1996) Enantioselective total synthesis of cyclopropane amino acids: natural products and protein methanologs. Tetrahedron Asymmetry 7:537–558

    Article  Google Scholar 

  • Jörres M, Chen X, Aceña JL, Merkens C, Bolm C, Liu H, Soloshonok VA (2014) Asymmetric synthesis of α-amino acids under operationally convenient conditions. Adv Synth Catal 356:2203–2208

    Article  Google Scholar 

  • Jörres M, Aceña JL, Soloshonok VA, Bolm C (2015) Asymmetric carbon–carbon bond formation under solventless conditions in ball mills. Chem Cat Chem 7:1265–1269

    Google Scholar 

  • Kawamura A, Moriwaki H, Röschenthaler G-V, Kawada K, Aceña JL, Soloshonok VA (2015) Synthesis of (2S,3S)-β-(trifluoromethyl)-α, β-diamino acid by Mannich addition of glycine Schiff base Ni(II) complexes to N-tert-butylsulfinyl-3,3,3-trifluoroacetaldimine. J Fluorine Chem 171:67–72

    Article  CAS  Google Scholar 

  • Kawashima A, Xie C, Mei H, Takeda R, Kawamura A, Sato T, Moriwaki H, Izawa K, Han J, Aceña JL, Soloshonok VA (2015) Asymmetric synthesis of (1R,2S)-1-amino-2-vinylcyclopropanecarboxylic acid by sequential SN2–SN2′ dialkylation of (R)-N-(benzyl)proline-derived glycine Schiff base Ni(II) complex. RSC Adv 5:1051–1058

    Article  CAS  Google Scholar 

  • Kong J, Chen CY, Balsells-Padros J, Cao Y, Dunn RF, Dolman SJ, Janey J, Li H, Zacuto MJ (2012) Synthesis of the HCV protease inhibitor vaniprevir (MK-7009) using ring-closing metathesis strategy. J Org Chem 77:3820–3828

    Article  CAS  PubMed  Google Scholar 

  • LaPlante SR, Llinàs-Brunet M (2005) Dynamics and structure-based design of drugs targeting the critical serine protease of the hepatitis C virus–From a peptidic substrate to BILN 2061. Curr Med Chem 4:111–132

    CAS  Google Scholar 

  • Llinàs-Brunet M, Bailey MD, Bolger G, Brochu C, Faucher A-M, Ferland JM, Garneau M, Ghiro E, Gorys V, Grand-Maître C, Halmos T, Lapeyre-Paquette N, Liard F, Poirier M, Rhéaume M, Tsantrizos YS, Lamarre D (2004) Structure—activity study on a novel series of macrocyclic inhibitors of the hepatitis C virus NS3 protease leading to the discovery of BILN 2061. J Med Chem 47:1605–1608

    Article  PubMed  Google Scholar 

  • Llinàs-Brunet M, Bailey MD, Goudreau N, Bhardwaj PK, Bordeleau J, Bos M, Bousquet Y, Cordingley MG, Duan J, Forgione P, Garneau M, Ghiro E, Gorys V, Goulet S, Halmos T, Kawai SH, Naud J, Poupart MA, White PW (2010) Discovery of a potent and selective noncovalent linear inhibitor of the hepatitis C virus NS3 protease (BI 201335). J Med Chem 53:6466–6476

    Article  PubMed  Google Scholar 

  • Lou S, Cuniere N, Su B-N, Hobson LA (2013) Concise asymmetric synthesis of a (1R,2S)-1-amino-2-vinylcyclopropanecarboxylic acid-derived sulfonamide and ethyl ester. Org Biomol Chem 11:6796–6805

    Article  CAS  PubMed  Google Scholar 

  • Mitchell RE (1985) Norcoronatine and N-coronafacoyl-l-valine, phytotoxic analogues of coronatine produced by a strain of Pseudomonas syringae pv. Glycinea. Phytochemistry 24:1485–1487

    Article  CAS  Google Scholar 

  • Moore JL, Taylor SM, Soloshonok VA (2005) An efficient and operationally convenient general synthesis of tertiary amines by direct alkylation of secondary amines with alkyl halides in the presence of Hunig’s base. Arkivoc 287–292

  • Moreau B, Charette AB (2005) Expedient synthesis of cyclopropane α-amino acids by the catalytic asymmetric cyclopropanation of alkenes using iodonium ylides derived from methyl nitroacetate. J Am Chem Soc 127:18014–18015

    Article  CAS  PubMed  Google Scholar 

  • Njoroge FG, Chen KX, Shih N-Y, Piwinski JJ (2008) Challenges in modern drug discovery: a case study of boceprevir, an HCV protease inhibitor for the treatment of hepatitis C virus infection. Acc Chem Res 41:50–59

    Article  CAS  PubMed  Google Scholar 

  • Pilot-Matias T, Tripathi R, Cohen D, Gaultier I, Dekhtyar T, Lu L, Reisch T, Irvin M, Hopkins T, Pithawalla R, Middleton T, Ng T, McDaniel K, Or YS, Menon R, Kempf D, Molla A, Collins C (2015) In vitro and in vivo antiviral activity and resistance profile of the hepatitis C virus NS3/4A protease inhibitor ABT-450. Antimicrob Agents Chemother 59:988–997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pirrung MC, McGeehan GM (1986) Ethylene biosynthesis. 6. Synthesis and evaluation of methylaminocyclopropanecarboxylic acid. J Org Chem 51:2103–2106

    Article  CAS  Google Scholar 

  • Qiu W, Soloshonok VA, Cai C, Tang X, Hruby VJ (2000) Convenient, large-scale asymmetric synthesis of enantiomerically pure trans-cinnamylglycine and -a-alanine. Tetrahedron 56:2577–2582

    Article  CAS  Google Scholar 

  • Qiu W, Gu X, Soloshonok VA, Carducci MD, Hruby VJ (2001) Stereoselective synthesis of conformationally constrained reverse turn dipeptide mimetics. Tetrahedron Lett 42:145–148

    Article  CAS  Google Scholar 

  • Revill P, Serradell N, Bolos J, Rosa E (2007) Telaprevir. Drug Future 32:788–798

    Article  CAS  Google Scholar 

  • Rosenquist Å, Samuelsson B, Johansson P-O, Cummings MD, Lenz O, Raboisson P, Simmen K, Vendeville S, de Kock H, Nilsson M, Horvath A, Kalmeijer R, de la Rosa G, Beumont-Mauviel M (2014) Discovery and development of simeprevir (TMC435), a HCV NS3/4A protease inhibitor. J Med Chem 57:1673–1693

    Article  CAS  PubMed  Google Scholar 

  • Sakamura S, Ichichara A, Shiraishi K, Sato H, Nishiyama K, Sakai R, Furusaki A, Matsumoto T (1977) The structure of coronatine. J Am Chem Soc 99:636–637

    Article  Google Scholar 

  • Scola PM, Sun LQ, Wang AX, Chen J, Sin N, Venables BL, Sit S-Y, Chen Y, Cocuzza A, Bilder DM, D’Andrea SV, Zheng B, Hewawasam P, Tu Y, Friborg J, Falk P, Hernandez D, Levine S, Chen C, Yu F, Sheaffer AK, Zhai G, Barry D, Knipe JO, Han Y-H, Schartman R, Donoso M, Mosure K, Sinz MW, Zvyaga T, Good AC, Rajamani R, Kish K, Tredup J, Klei HE, Gao Q, Mueller L, Colonno RJ, Grasela DM, Adams SP, Loy J, Levesque PC, Sun H, Shi H, Sun L, Warner W, Li D, Zhu J, Meanwell NA, McPhee F (2014) The discovery of asunaprevir (BMS-650032), an orally efficacious NS3 protease inhibitor for the treatment of hepatitis C virus infection. J Med Chem 57:1730–1752

    Article  CAS  PubMed  Google Scholar 

  • Sheng XC, Appleby T, Butler T, Cai R, Chen X, Cho A, Clarke MO, Cottell J, Delaney WE, Doerffler E, Link J, Ji M, Pakdaman R, Pyun HJ, Wu Q, Xu J, Kim CU (2012) Discovery of GS-9451: an acid inhibitor of the hepatitis C virus NS3/4A protease. Bioorg Med Chem Lett 22:2629–2634

    Article  PubMed  Google Scholar 

  • Soloshonok VA, Ueki H (2007) Design, synthesis, and characterization of binuclear Ni(II) complexes with inherent helical chirality. J Am Chem Soc 129:2426–2427

    Article  CAS  PubMed  Google Scholar 

  • Soloshonok VA, Gerus II, Yagupolskii YL, Kukhar VP (1987) Fluorine-containing amino acids III. α-Trifluoromethyl-α-amino acids. Zh Org Khim 23:2308–2313

    CAS  Google Scholar 

  • Soloshonok VA, Kukhar VP, Galushko SV, Svistunova NY, Avilov DV, Kuzmina NA, Raevski NI, Struchkov YT, Pisarevsky AP, Belokon YN (1993) General method of diastereo- and enantioselective synthesis of β-hydroxy-α-amino acids by condensation of aldehydes and ketones with glycine. J Chem Soc Perkin Trans 3143–3155

  • Soloshonok VA, Hayashi T, Ishikawa K, Nagashima N (1994a) Highly diastereoselective aldol reaction of fluoroalkyl aryl ketones with methyl isocyanoacetate catalyzed by silver(I)/triethylamine. Tetrahedron Lett 35:1055–1058

    Article  CAS  Google Scholar 

  • Soloshonok VA, Kirilenko NA, Fokina NA, Shishkina IP, Galushko SV, Kukhar VP, Svedas VK, Kozlova EV (1994b) Biocatalytic resolution of β-fluoroalkyl-β-amino acids. Tetrahedron Asymmetry 5:1119–1126

    Article  CAS  Google Scholar 

  • Soloshonok VA, Avilov DV, Kukhar VP, Tararov VI, Saveleva TF, Churkina TD, Ikonnikov NS, Kochetkov KA, Orlova SA, Pysarevsky AP, Struchkov YT, Raevsky NI, Belokon YN (1995) Asymmetric aldol reactions of chiral Ni(II)-complex of glycine with aldehydes. Stereodivergent synthesis of syn-(2S)- and syn-(2R)-β-alkylserines. Tetrahedron Asymmetry 6:1741–1756

    Article  CAS  Google Scholar 

  • Soloshonok VA, Avilov DV, Kukhar VP (1996) Highly diastereoselective asymmetric aldol reactions of chiral Ni(II) complex of glycine with alkyl trifluoromethyl ketones. Tetrahedron Asymmetry 7:1547–1550

    Article  CAS  Google Scholar 

  • Soloshonok VA, Avilov DV, Kukhar VP, Van Meervelt L, Mischenko N (1997) Highly diastereoselective aza-aldol reactions of a chiral Ni(II) complex of glycine with imines. An efficient asymmetric approach to 3-perfluoroalkyl-2,3-diamino acids. Tetrahedron Lett 38:4671–4674

    Article  CAS  Google Scholar 

  • Soloshonok VA, Cai C, Hruby VJ, Van Meervelt L, Mischenko N (1999) Stereochemically defined C-substituted glutamic acids and their derivatives. 1. An efficient asymmetric synthesis of (2S,3S)-3-methyl- and -3-trifluoromethylpyroglutamic acids. Tetrahedron 55:12031–12044

    Article  CAS  Google Scholar 

  • Soloshonok VA, Cai C, Hruby VJ (2000a) (S)- or (R)-3-(E-Enoyl)-4-phenyl-1,3-oxazolidin-2-ones: ideal Michael acceptors to afford a virtually complete control of simple and face diastereoselectivity in addition reactions with glycine derivatives. Org Lett 2:747–750

    Article  CAS  PubMed  Google Scholar 

  • Soloshonok VA, Cai C, Hruby VJ, Van Meervelt L, Yamazaki T (2000b) Rational design of highly diastereoselective, organic base-catalyzed, room-temperature Michael addition reactions. J Org Chem 65:6688–6696

    Article  CAS  PubMed  Google Scholar 

  • Soloshonok VA, Tang X, Hruby VJ, Van Meervelt L (2001) Asymmetric synthesis of α, β-dialkyl-α-phenylalanines via direct alkylation of a chiral alanine derivative with racemic α-alkylbenzyl bromides. A case of high enantiomer differentiation at room temperature. Org Lett 3:341–343

    Article  CAS  PubMed  Google Scholar 

  • Soloshonok VA, Ohkura H, Sorochinsky A, Voloshin N, Markovsky A, Belik M, Yamazaki T (2002) Convenient, large-scale asymmetric synthesis of β-aryl-substituted α, α-difluoro-β-amino acids. Tetrahedron Lett 43:5445–5448

    Article  CAS  Google Scholar 

  • Soloshonok VA, Ueki H, Tiwari R, Cai C, Hruby VJ (2004) Virtually complete control of simple and face diastereoselectivity in the Michael addition reactions between achiral equivalents of a nucleophilic glycine and (S)- or (R)-3-(E-enoyl)-4-phenyl-1,3-oxazolidin-2-ones: practical method for preparation of β-substituted pyroglutamic acids and prolines. J Org Chem 69:4984–4990

    Article  CAS  PubMed  Google Scholar 

  • Soloshonok VA, Ueki H, Ellis TK (2005a) New generation of nucleophilic glycine equivalents. Tetrahedron Lett 46:941–944

    Article  Google Scholar 

  • Soloshonok VA, Ueki H, Ellis TK, Yamada T, Ohfune Y (2005b) Application of modular nucleophilic glycine equivalents for truly practical asymmetric synthesis of β-substituted pyroglutamic acids. Tetrahedron Lett 46:1107–1110

    Article  CAS  Google Scholar 

  • Soloshonok VA, Yamada T, Ueki H, Moore AM, Cook TK, Arbogast KL, Soloshonok AV, Martin CH, Ohfune Y (2006) Operationally convenient, efficient asymmetric synthesis of enantiomerically pure 4-aminoglutamic acids via methylene dimerization of chiral glycine equivalents with dichloromethane. Tetrahedron 62:6412–6419

    Article  CAS  Google Scholar 

  • Soloshonok VA, Ellis TK, Ueki H, Ono T (2009a) Resolution/deracemization of chiral α-amino acids using resolving reagents with flexible stereogenic centers. J Am Chem Soc 131:7208–7209

    Article  CAS  PubMed  Google Scholar 

  • Soloshonok VA, Ueki H, Ellis TK (2009b) New generation of modular nucleophilic glycine equivalents for the general synthesis of α-amino acids. Synlett 704–715

  • Soloshonok VA, Ono T, Ueki H, Vanthuyne N, Balaban TS, Bürck J, Fliegl H, Klopper W, Naubron J-V, Bui TTT, Drake AF, Roussel C (2010) Ridge-tile-like chiral topology: synthesis, resolution, and complete chiroptical characterization of enantiomers of edge-sharing binuclear square planar complexes of Ni(II) bearing achiral ligands. J Am Chem Soc 132:10477–10483

    Article  CAS  PubMed  Google Scholar 

  • Sorochinsky AE, Aceña JL, Moriwaki H, Sato T, Soloshonok VA (2013a) Asymmetric synthesis of α-amino acids via homologation of Ni(II) complexes of glycine Schiff bases; Part 1: alkyl halide alkylations. Amino Acids 45:691–718

    Article  CAS  PubMed  Google Scholar 

  • Sorochinsky AE, Aceña JL, Moriwaki H, Sato T, Soloshonok V (2013b) Asymmetric synthesis of α-amino acids via homologation of Ni(II) complexes of glycine Schiff bases. Part 2: Aldol, Mannich addition reactions, deracemization and (S) to (R) interconversion of α-amino acids. Amino Acids 45:1017–1033

    Article  CAS  PubMed  Google Scholar 

  • Sorochinsky AE, Aceña JL, Moriwaki H, Sato T, Soloshonok VA (2013c) Synthesis of fluorine-containing α-amino acids in enantiomerically pure form via homologation of Ni(II) complexes of glycine and alanine Schiff bases. J Fluorine Chem 155:21–38

    Article  Google Scholar 

  • Sorochinsky AE, Ueki H, Aceña JL, Ellis TK, Moriwaki H, Sato T, Soloshonok VA (2013d) Chemical approach for interconversion of (S)- and (R)-α-amino acids. Org Biomol Chem 11:4503–4507

    Article  CAS  PubMed  Google Scholar 

  • Sorochinsky AE, Ueki H, Aceña JL, Ellis TK, Moriwaki H, Sato T, Soloshonok VA (2013e) Chemical deracemization and (S) to (R) interconversion of some fluorine-containing α-amino acids. J Fluorine Chem 152:114–118

    Article  CAS  Google Scholar 

  • Stammer CH (1990) Cyclopropane amino acids: 2,3- and 3,4-Methanoamino acids. Tetrahedron 46:2231–2254

    Article  CAS  Google Scholar 

  • Summa V, Ludmerer SW, McCauley JA, Fandozzi C, Burlein C, Claudio G, Coleman PJ, DiMuzio JM, Ferrara M, Di Filippo M, Gates AT, Graham DJ, Harper S, Hazuda DJ, McHale C, Monteagudo E, Pucci V, Rowley M, Rudd MT, Soriano A, Stahlhut MW, Vacca JP, Olsen DB, Liverton NJ, Carroll SS (2012) MK-5172, a selective inhibitor of hepatitis C virus NS3/4a protease with broad activity across genotypes and resistant variants. Antimicrob Agents Chemother 56:4161–4167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takeda R, Kawamura A, Kawashima A, Sato T, Moriwaki H, Izawa K, Akaji K, Wang S, Liu H, Aceña JL, Soloshonok VA (2014) Chemical dynamic kinetic resolution and S/R interconversion of unprotected α-amino acids. Angew Chem Int Ed 53:12214–12217

    Article  CAS  Google Scholar 

  • Tang X, Soloshonok VA, Hruby VJ (2000) Convenient, asymmetric synthesis of enantiomerically pure 2´,6´-dimethyltyrosine (DMT) via alkylation of chiral equivalent of nucleophilic glycine. Tetrahedron Asymmetry 11:2917–2925

    Article  CAS  Google Scholar 

  • Tang W, Wei X, Yee NK, Patel N, Lee H, Savoie J, Senanayake CH (2011) A practical asymmetric synthesis of isopropyl (1R,2S)-dehydrocoronamate. Org Process Res Dev 15:1207–1211

    Article  CAS  Google Scholar 

  • Taylor SM, Yamada T, Ueki H, Soloshonok VA (2004) Asymmetric synthesis of enantiomerically pure 4-aminoglutamic acids via methylene dimerization of chiral glycine equivalents with dichloromethane under operationally convenient conditions. Tetrahedron Lett 45:9159–9162

    Article  CAS  Google Scholar 

  • Ueki H, Ellis TK, Martin CH, Boettiger TU, Bolene SB, Soloshonok VA (2003a) Improved synthesis of proline-derived Ni(II) complexes of glycine: versatile chiral equivalents of nucleophilic glycine for general asymmetric synthesis of a-amino acids. J Org Chem 68:7104–7107

    Article  CAS  PubMed  Google Scholar 

  • Ueki H, Ellis TK, Martin CH, Soloshonok VA (2003b) Efficient large-scale synthesis of picolinic acid-derived nickel(II) complexes of glycine. Eur J Org Chem 1954–1957

  • Vagner J, Qu H, Hruby VJ (2008) Peptidomimetics, a synthetic tool of drug discovery. Curr Opin Chem Biol 12:292–296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walsh C, Pascal RA Jr, Johnston M, Raines R, Dikshit D, Krantz A, Honma M (1981) Mechanistic studies on the pyridoxal phosphate enzyme 1-aminocyclopropane-1-carboxylate deaminase from Pseudomonas sp. Biochemistry 20:7509–7519

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Lin D, Zhou S, Ding X, Soloshonok VA, Liu H (2011) Asymmetric synthesis of sterically and electronically demanding linear ω-trifluoromethyl containing amino acids via alkylation of chiral equivalents of nucleophilic glycine and alanine. J Org Chem 76:684–687

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Liu H, Aceña JL, Houck D, Takeda R, Moriwaki H, Sato T, Soloshonok VA (2013) Synthesis of bis-α, α’-amino acids through diastereoselective bis-alkylations of chiral Ni(II)-complexes of glycine. Org Biomol Chem 11:4508–4515

    Article  CAS  PubMed  Google Scholar 

  • Zhou S, Wang J, Chen X, Aceña JL, Soloshonok VA, Liu H (2014) Chemical kinetic resolution of unprotected β-substituted β-amino acids using recyclable chiral ligands. Angew Chem Int Ed 53:7883–7886

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank IKERBASQUE, Basque Foundation for Science, and the Basque Government (SAIOTEK S-PE13UN098) for generous financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vadim A. Soloshonok.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: P. Meffre.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 4953 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kawashima, A., Shu, S., Takeda, R. et al. Advanced asymmetric synthesis of (1R,2S)-1-amino-2-vinylcyclopropanecarboxylic acid by alkylation/cyclization of newly designed axially chiral Ni(II) complex of glycine Schiff base. Amino Acids 48, 973–986 (2016). https://doi.org/10.1007/s00726-015-2138-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-015-2138-3

Keywords

Navigation