Skip to main content
Log in

Chronic treatment with anti-bipolar drugs suppresses glutamate release from astroglial cultures

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Astroglial cells are fundamental elements of most neurological diseases, including bipolar disorders in which astrocytes show morphological and functional deficiency. Here we report the suppression of astroglial glutamate release by chronic treatment with three anti-bipolar drugs, lithium salt (Li+), carbamazepine (CBZ) and valproic acid (VPA). Release of glutamate was triggered by transient exposure of astrocytes to ATP (which activated purinoceptors) and 45 mM K+ (which depolarised cell membrane to ~−30 mV). In both types of stimulation glutamate release was regulated by Ca2+ entry through plasmalemmal channels and by Ca2+ release from the endoplasmic reticulum (ER) intracellular stores. Exposure of astroglial cultures to Li+, CBZ and VPA for 2 weeks led to a significant (more than 2 times) inhibition of glutamate release, which may alleviate the hyperactivity of the glutamatergic transmission in the brain of patients with bipolar disorders and thus contribute the underlying mechanism of drug action.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bernstein HG, Steiner J, Guest PC, Dobrowolny H, Bogerts B (2015) Glial cells as key players in schizophrenia pathology: recent insights and concepts of therapy. Schizophr Res 161(1):4–18

    Article  PubMed  Google Scholar 

  • Brennan BP, Hudson JI, Jensen JE, McCarthy J, Roberts JL, Prescot AP, Cohen BM, Pope HG Jr, Renshaw PF, Ongur D (2010) Rapid enhancement of glutamatergic neurotransmission in bipolar depression following treatment with riluzole. Neuropsychopharmacology 35(3):834–846

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Burda JE, Sofroniew MV (2014) Reactive gliosis and the multicellular response to CNS damage and disease. Neuron 81(2):229–248

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chen G, Henter ID, Manji HK (2010) Presynaptic glutamatergic dysfunction in bipolar disorder. Biol Psychiatry 67(11):1007–1009

    Article  PubMed Central  PubMed  Google Scholar 

  • Czeh B, Fuchs E, Flugge G (2013) Altered glial plasticity in animal models for mood disorders. Curr Drug Targets 14(11):1249–1261

    Article  CAS  PubMed  Google Scholar 

  • Eastwood SL, Harrison PJ (2010) Markers of glutamate synaptic transmission and plasticity are increased in the anterior cingulate cortex in bipolar disorder. Biol Psychiatry 67(11):1010–1016

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Giaume C, Kirchhoff F, Matute C, Reichenbach A, Verkhratsky A (2007) Glia: the fulcrum of brain diseases. Cell Death Differ 14(7):1324–1335

    Article  CAS  PubMed  Google Scholar 

  • Golovina VA (2005) Visualization of localized store-operated calcium entry in mouse astrocytes. Close proximity to the endoplasmic reticulum. J Physiol 564(Pt 3):737–749

  • Hertz L (2012) Isotope-based quantitation of uptake, release, and metabolism of glutamate and glucose in cultured astrocytes. Methods Mol Biol 814:305–323

    Article  CAS  PubMed  Google Scholar 

  • Hertz L, Peng L, Lai JC (1998) Functional studies in cultured astrocytes. Methods 16(3):293–310

    Article  CAS  PubMed  Google Scholar 

  • Jeremic A, Jeftinija K, Stevanovic J, Glavaski A, Jeftinija S (2001) ATP stimulates calcium-dependent glutamate release from cultured astrocytes. J Neurochem 77(2):664–675

    Article  CAS  PubMed  Google Scholar 

  • Kirischuk S, Parpura V, Verkhratsky A (2012) Sodium dynamics: another key to astroglial excitability? Trends Neurosci 35(8):497–506

    Article  CAS  PubMed  Google Scholar 

  • Li B, Gu L, Zhang H, Huang J, Chen Y, Hertz L, Peng L (2007) Up-regulation of cPLA2 gene expression in astrocytes by all three conventional anti-bipolar drugs is drug-specific and enzyme-specific. Psychopharmacology 194(3):333–345

    Article  CAS  PubMed  Google Scholar 

  • Li B, Zhang S, Li M, Zhang H, Hertz L, Peng L (2009) Down-regulation of GluK2 kainate receptor expression by chronic treatment with mood-stabilizing anti-convulsants or lithium in cultured astrocytes and brain, but not in neurons. Neuropharmacology 57(4):375–385

    Article  CAS  PubMed  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193(1):265–275

    CAS  PubMed  Google Scholar 

  • Malarkey EB, Ni Y, Parpura V (2008) Ca2+ entry through TRPC1 channels contributes to intracellular Ca2+ dynamics and consequent glutamate release from rat astrocytes. Glia 56(8):821–835

    Article  PubMed  Google Scholar 

  • Martineau M, Parpura V, Mothet JP (2014) Cell-type specific mechanisms of d-serine uptake and release in the brain. Front Synaptic Neurosci 6:12

    Article  PubMed Central  PubMed  Google Scholar 

  • Michael N, Erfurth A, Ohrmann P, Gossling M, Arolt V, Heindel W, Pfleiderer B (2003) Acute mania is accompanied by elevated glutamate/glutamine levels within the left dorsolateral prefrontal cortex. Psychopharmacology 168(3):344–346

    Article  CAS  PubMed  Google Scholar 

  • Miguel-Hidalgo JJ, Waltzer R, Whittom AA, Austin MC, Rajkowska G, Stockmeier CA (2010) Glial and glutamatergic markers in depression, alcoholism, and their comorbidity. J Affect Disord 127(1–3):230–240

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ongur D, Drevets WC, Price JL (1998) Glial reduction in the subgenual prefrontal cortex in mood disorders. Proc Natl Acad Sci USA 95(22):13290–13295

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ongur D, Jensen JE, Prescot AP, Stork C, Lundy M, Cohen BM, Renshaw PF (2008) Abnormal glutamatergic neurotransmission and neuronal-glial interactions in acute mania. Biol Psychiatry 64(8):718–726

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Parpura V, Zorec R (2010) Gliotransmission: exocytotic release from astrocytes. Brain Res Rev 63(1–2):83–92

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Parpura V, Basarsky TA, Liu F, Jeftinija K, Jeftinija S, Haydon PG (1994) Glutamate-mediated astrocyte-neuron signalling. Nature 369(6483):744–747

    Article  CAS  PubMed  Google Scholar 

  • Parpura V, Grubisic V, Verkhratsky A (2011) Ca2+ sources for the exocytotic release of glutamate from astrocytes. Biochim Biophys Acta 1813(5):984–991

    Article  CAS  PubMed  Google Scholar 

  • Parpura V, Heneka MT, Montana V, Oliet SH, Schousboe A, Haydon PG, Stout RF Jr, Spray DC, Reichenbach A, Pannicke T, Pekny M, Pekna M, Zorec R, Verkhratsky A (2012) Glial cells in (patho)physiology. J Neurochem 121(1):4–27

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pekny M, Pekna M (2004) Astrocyte intermediate filaments in CNS pathologies and regeneration. J Pathol 204(4):428–437

    Article  CAS  PubMed  Google Scholar 

  • Pekny M, Pekna M (2014) Astrocyte reactivity and reactive astrogliosis: costs and benefits. Physiol Rev 94(4):1077–1098

    Article  PubMed  Google Scholar 

  • Pekny M, Wilhelmsson U, Pekna M (2014) The dual role of astrocyte activation and reactive gliosis. Neurosci Lett 565:30–38

    Article  CAS  PubMed  Google Scholar 

  • Peng LA, Juurlink BH, Hertz L (1991) Differences in transmitter release, morphology, and ischemia-induced cell injury between cerebellar granule cell cultures developing in the presence and in the absence of a depolarizing potassium concentration. Brain Res Dev Brain Res 63(1–2):1–12

    Article  CAS  PubMed  Google Scholar 

  • Rajkowska G (2014) Pathology in astroglia, glutamate, and GABA in major depressive disorder: evidence from studies of human postmortem tissue. In: Popoli M, Diamond D, Sanacora G (eds) Synaptic stress and pathogenesis of neuropsychiatric disorders. Springer Science+Business Media, New York, pp 245–264

  • Rajkowska G, Stockmeier CA (2013) Astrocyte pathology in major depressive disorder: insights from human postmortem brain tissue. Curr Drug Targets 14(11):1225–1236

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Reyes RC, Verkhratsky A, Parpura V (2013) TRPC1-mediated Ca2+ and Na+ signalling in astroglia: differential filtering of extracellular cations. Cell Calcium 54(2):120–125

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sanacora G, Banasr M (2013) From pathophysiology to novel antidepressant drugs: glial contributions to the pathology and treatment of mood disorders. Biol Psychiatry 73(12):1172–1179

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sofroniew MV (2009) Molecular dissection of reactive astrogliosis and glial scar formation. Trends Neurosci 32(12):638–647

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Song D, Man Y, Li B, Xu J, Hertz L, Peng L (2013) Comparison between drug-induced and K+-induced changes in molar acid extrusion fluxes (JH+) and in energy consumption rates in astrocytes. Neurochem Res 38(11):2364–2374

    Article  CAS  PubMed  Google Scholar 

  • Verkhratsky A, Krishtal OA, Burnstock G (2009) Purinoceptors on neuroglia. Mol Neurobiol 39(3):190–208

    Article  CAS  PubMed  Google Scholar 

  • Verkhratsky A, Sofroniew MV, Messing A, deLanerolle NC, Rempe D, Rodriguez JJ, Nedergaard M (2012) Neurological diseases as primary gliopathies: a reassessment of neurocentrism. ASN Neuro 4(3):e00082

    Article  PubMed Central  PubMed  Google Scholar 

  • Verkhratsky A, Rodriguez JJ, Steardo L (2013) Astrogliopathology: a central element of neuropsychiatric diseases? Neuroscientist 20(6):576–588

    Article  PubMed  Google Scholar 

  • Verkhratsky A, Marutle A, Rodriguez-Arellano JJ, Nordberg A (2014a) Glial asthenia and functional paralysis: a new perspective on neurodegeneration and Alzheimer’s Disease. Neuroscientist. doi:10.1177/1073858414547132

  • Verkhratsky A, Reyes RC, Parpura V (2014b) TRP channels coordinate ion signalling in astroglia. Rev Physiol Biochem Pharmacol 166:1–22

    Article  PubMed Central  PubMed  Google Scholar 

  • Yan E, Li B, Gu L, Hertz L, Peng L (2013) Mechanisms for L-channel-mediated increase in [Ca2+]i and its reduction by anti-bipolar drugs in cultured astrocytes combined with its mRNA expression in freshly isolated cells support the importance of astrocytic L-channels. Cell Calcium 54(5):335–342

    Article  CAS  PubMed  Google Scholar 

  • Zarate CA Jr, Manji HK (2008) Bipolar disorder: candidate drug targets. Mt Sinai J Med 75(3):226–247

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by Grant No. 31440048 from the National Natural Science Foundation of China. AV was supported in part by the grant (agreement from August 27 2013 No. 02.B.49.21.0003) between The Ministry of Education and Science of the Russian Federation and Lobachevsky State University of Nizhny Novgorod and by the grant of the Russian Scientific Foundation №14-15-00633.

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liang Peng.

Additional information

Handling Editor: N. Singewald.

Z. Liu and D. Song contributed equally to this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Song, D., Yan, E. et al. Chronic treatment with anti-bipolar drugs suppresses glutamate release from astroglial cultures. Amino Acids 47, 1045–1051 (2015). https://doi.org/10.1007/s00726-015-1936-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-015-1936-y

Keywords

Navigation