Skip to main content

Advertisement

Log in

The many faces of interferon tau

  • Invited Review
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Interferon tau (IFNT) was discovered as the pregnancy recognition signal in ruminants, but is now known to have a plethora of physiological functions in the mammalian uterus. The mammalian uterus includes, from the outer surface to the lumen, the serosa, myometrium and endometrium. The endometrium consists of the luminal, superficial glandular, and glandular epithelia, each with a unique phenotype, stromal cells, vascular elements, nerves and immune cells. The uterine epithelia secrete or selectively transport molecules into the uterine lumen that are collectively known as histotroph. Histotroph is required for growth and development of the conceptus (embryo and its associated extra-embryonic membranes) and includes nutrients such as amino acids and glucose, enzymes, growth factors, cytokines, lymphokines, transport proteins for vitamins and minerals and extracellular matrix molecules. Interferon tau and progesterone stimulate transport of amino acids in histotroph, particularly arginine. Arginine stimulates the mechanistic target of rapamycin pathway to induce proliferation, migration and protein synthesis by cells of the conceptus, and arginine is the substrate for synthesis of nitric oxide and polyamines required for growth and development of the conceptus. In ruminants, IFNT also acts in concert with progesterone from the corpus luteum to increase expression of genes for transport of nutrients into the uterine lumen, as well as proteases, protease inhibitors, growth factors for hematopoiesis and angiogenesis and other molecules critical for implantation and placentation. Collectively, the pleiotropic effects of IFNT contribute to survival, growth and development of the ruminant conceptus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alexenko AP, Ealy AD, Bixby JA, Roberts RM (2002) A classification for the interferon-tau. J Interferon Cytokine Res 20:817–822

    Article  Google Scholar 

  • Bazer FW (2013) Pregnancy recognition signaling mechanisms in ruminants and pigs. J Anim Sci Biotech 4:23–32

    Article  CAS  Google Scholar 

  • Bazer FW, First NL (1983) Pregnancy and parturition. J Anim Sci 57(Suppl 2):425–460

    CAS  PubMed  Google Scholar 

  • Bazer FW, Worthington-White D, Fliss MFV et al (1991) Uteroferrin: a progesterone-induced hematopoietic growth factor of uterine origin. J Exp Hematol 19:910–915

    CAS  Google Scholar 

  • Bazer FW, Spencer TE, Ott TL (1997) Interferon tau: a novel pregnancy recognition signal. Am J Reprod Immunol 37:412–420

    Article  CAS  PubMed  Google Scholar 

  • Bazer FW, Spencer TE, Johnson GA (2009) Interferons and uterine receptivity. Sem Reprod Med 27:90–102

    Article  CAS  Google Scholar 

  • Bazer FW, Wu G, Spencer TE et al (2010) Novel pathways for implantation and establishment and maintenance of pregnancy in mammals. Mol Hum Reprod 16:135–152

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bazer FW, Spencer TE, Johnson GA et al (2011) Uterine receptivity to implantation of blastocysts in mammals. Front Biosci S3:745–767

    Article  CAS  Google Scholar 

  • Bazer FW, Satterfield MC, Song G (2012) Modulation of uterine function by endocrine and paracrine factors in ruminants. Anim Reprod 9:305–311

    Google Scholar 

  • Bazer FW, Kim JY, Song GW et al (2013) Roles of selected nutrients on development of the conceptus during pregnancy. Soc Reprod Fertil Suppl 68:159–174

    Google Scholar 

  • Behrens TW, Graham RR (2011) TRAPing a new gene for autoimmunity. Nat Genet 43:90–91

    Article  CAS  PubMed  Google Scholar 

  • Bernstein HG, Derst C, Stich C et al (2011) The agmatine-degrading enzyme agmatinase: a key to agmatine signaling in rat and human brain? Amino Acids 40:453–465

    Article  CAS  PubMed  Google Scholar 

  • Briggs TA, Rice GI, Daly S et al (2011) Tartrate-resistant acid phosphatase deficiency causes a bone dysplasia with autoimmunity and a type I interferon expression signature. Nat Genet 43:127–131

    Article  CAS  PubMed  Google Scholar 

  • Brooks K, Spencer TE (2014) Biological roles of interferon tau (IFNT) and type 1 IFN receptors in elongation of the ovine conceptus. Biol Reprod Published December 10, 2014 as doi:10.1095

  • Cartwright JE, Tse WK, Whitley GS (2002) Hepatocyte growth factor induced human trophoblast motility involves phosphatidylinositol-3-kinase, mitogen-activated protein kinase, and inducible nitric oxide synthase. Exp Cell Res 279:219–226

    Article  CAS  PubMed  Google Scholar 

  • Choi Y, Johnson GA, Burghardt RC et al (2001) Interferon regulatory factor two restricts expression of interferon stimulated genes to the endometrial stroma and glandular epithelium of the ovine uterus. Biol Reprod 65:1038–1049

    Article  CAS  PubMed  Google Scholar 

  • Choi Y, Johnson GA, Spencer TE et al (2003) Pregnancy and interferon tau regulate major histocompatibility complex class i and beta-2-microglobulin expression in the ovine uterus. Biol Reprod 68:1703–1710

    Article  CAS  PubMed  Google Scholar 

  • Dai ZL, Wu ZL, Yang Y et al (2013) Nitric oxide and energy metabolism in mammals. Biofactors 39:383–391

    Article  CAS  PubMed  Google Scholar 

  • Ducsay CA, Buhi WC, Bazer FW et al (1984) Role of uteroferrin in placental iron transport: effect of maternal iron treatment on fetal iron and uteroferrin content and neonatal hemoglobin. J Anim Sci 59:1303–1308

    CAS  PubMed  Google Scholar 

  • Gao H, Wu G, Spencer TE et al (2009a) Select nutrients In the ovine uterine lumen: II. Glucose transporters in the uterus and peri-implantation conceptuses. Biol Reprod 80:94–104

    Article  CAS  PubMed  Google Scholar 

  • Gao H, Wu G, Spencer TE et al (2009b) Select nutrients in the ovine uterine lumen: III Cationic amino acid transporters in the ovine uterus and peri-implantation conceptuses. Biol Reprod 80:602–609

    Article  CAS  PubMed  Google Scholar 

  • Gao H, Wu G, Spencer TE et al (2009c) Select nutrients in the ovine uterine lumen: IV. Expression of neutral and acidic amino acid transporters in ovine uteri and periimplantation conceptuses. Biol Reprod 80:1196–1208

    Article  CAS  PubMed  Google Scholar 

  • Gao H, Wu G, Spencer TE et al (2009d) Select nutrients in the ovine uterine lumen: I. Amino acids, glucose and ions in uterine lumenal fluid of cyclic and pregnant ewes. Biol Reprod 80:86–93

    Article  CAS  PubMed  Google Scholar 

  • Gao H, Spencer TE, Wu G et al (2010) Uteroferrin (ACP5) in the ovine uterus: I. regulation by pregnancy and progesterone. J Anim Sci Biotech 1:137–150

    Google Scholar 

  • Grillo MA, Lanza A, Colombatto S (2008) Transport of amino acids through the placenta and their role. Amino Acids 34:517–523

    Article  CAS  PubMed  Google Scholar 

  • Guertin DA, Sabatini DM (2009) The pharmacology of mTOR inhibition. Sci Signal 2:1–6

    Google Scholar 

  • Guillomot M, Flechon JE, Leroy F (1993) Blastocyst development and implantation. In: Thibault C, Levasseur MC, Hunter RHF (eds) Reproduction in mammals and man. Ellipses Press, Paris, pp 387–411

    Google Scholar 

  • Guo H, Marroquin CE, Qai PY et al (2005) Nitric oxide-dependent osteopontin expression induces metastatic behavior in HepG2 cells. Dig Dis Sci 50:1288–1298

    Article  CAS  PubMed  Google Scholar 

  • Haas AL, Aherns P, Bright PM, Amhel H (1987) Interferon induces a 15-kilodalton protein exhibiting marked homology to ubiquitin. J Biol Chem 262:11315–11323

    CAS  PubMed  Google Scholar 

  • Hare GMT, Freedman J, Mazer CD (2013) Review article: risks of anemia and related management strategies: can perioperative blood management improve patient safety? Can J Anesth 60:168–175

    Article  PubMed  Google Scholar 

  • Hayman AR, Cox TM (2003) Tartrate-resistant acid phosphatase knockout mice. J Bone Miner Res 18:1905–1907

    Article  CAS  PubMed  Google Scholar 

  • Hayman AR, Jones SJ, Boyde A et al (1996) Mice lacking tartrate-resistant acid phosphatase (Acp 5) have disrupted endochondral ossification and mild osteopetrosis. Development 22:3151–3162

    Google Scholar 

  • Hayman AR, Macary P, Lehner PJ et al (2001) Tartrate-resistant acid phosphatase (Acp5): identification in diverse human tissues and dendritic cells. J Histochem Cytochem 49:675–684

    Article  CAS  PubMed  Google Scholar 

  • Hayman AR, Hilton E, Job-Deslandre C et al (2011) Tartrate-resistant acid phosphatase deficiency causes a bone dysplasia with autoimmunity and a type I interferon expression signature. Nat Genet 43:127–131

    Article  PubMed  Google Scholar 

  • Johnson GA (2008) Uterine stromal cell differentiation in non-decidualizing species. In: Aplin JD, Fazleabas AT, Glasser SR, Giudice LC, (eds) The Endometrium: Molecular, Cellular and Clinical Perspectives, 2nd Edition. Informa Healthcare Ltd, pp 409–421

  • Johnson GA, Spencer TE, Hansen TR et al (1999) Expression of the interferon-tau inducible ubiquitin cross-reactive protein in the ovine uterus. Biol Reprod 61:312–318

    Article  CAS  PubMed  Google Scholar 

  • Johnson GA, Burghardt RC, Bazer FW et al (2003) Osteopontin: roles in implantation and placentation. Biol Reprod 69:1458–1471

    Article  CAS  PubMed  Google Scholar 

  • Joyce MM, White FJ, Burghardt RC et al (2005) Interferon stimulated gene 15 (ISG15) conjugates to cytosolic proteins and is expressed at the uterine-placental interface throughout ovine pregnancy. Endocrinology 146:675–684

    Article  CAS  PubMed  Google Scholar 

  • Kim J, Erikson DW, Burghardt RC et al (2010) Secreted phosphoprotein 1 binds integrins to initiate multiple cell signaling pathways, including FRAP1/mTOR, to support attachment and force-generated migration of trophectoderm cells. Matrix Biol 29:369–382

    Article  CAS  PubMed  Google Scholar 

  • Kim J, Burghardt RC, Wu G et al (2011) Select Nutrients in the ovine uterine lumen: IX. Differential effects of arginine, leucine, glutamine and glucose on interferon tau, ornithine decarboxylase and nitric oxide synthase in the ovine conceptus. Biol Reprod 84:1139–1147

    Article  CAS  PubMed  Google Scholar 

  • Kim JY, Song GH, Wu G et al (2013) Arginine, leucine, and glutamine stimulate proliferation of porcine trophectoderm cells through the MTOR-RPS6K-RPS6-EIF4EBP1 signal transduction pathway. Biol Reprod 88:113–120

    Article  PubMed  Google Scholar 

  • Kong X, Tan B, Yin Y et al (2014) Putrescine stimulates the mTOR signaling pathway and protein synthesis in porcine trophectoderm cells. Biol Reprod 91:106

    Article  PubMed  Google Scholar 

  • Kwon H, Spencer TE, Bazer FW et al (2003) Developmental changes of amino acids in ovine fetal fluids. Biol Reprod 68:1813–1820

    Article  CAS  PubMed  Google Scholar 

  • Kwon H, Wu G, Meininger CJ et al (2004a) Developmental changes in nitric oxide synthesis in the ovine placenta. Biol Reprod 70:679–686

    Article  CAS  PubMed  Google Scholar 

  • Kwon H, Ford SP, Bazer FW et al (2004b) Maternal nutrient restriction reduces concentrations of amino acids and polyamines in ovine maternal and fetal plasma and fetal fluids. Biol Reprod 71:901–908

    Article  CAS  PubMed  Google Scholar 

  • Lassala A, Bazer FW, Cudd TA et al (2010) Parenteral administration of l-arginine prevents fetal growth restriction in undernourished ewes. J Nutr 140:1242–1248

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lassala A, Bazer FW, Cudd TA et al (2011) Parenteral administration of l-arginine enhances fetal survival and growth in sheep carrying multiple pregnancies. J Nutr 141:849–855

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Laurenz JC, Hadjisavas M, Chovanic GW, Bazer FW (1997a) Myelosuppression in the pig (Sus scrofa): Uteroferrin reduces the myelosuppressive effects of 5-flourouracil in young pigs. Comp Biochem Physiol 116A:369–377

    Article  CAS  Google Scholar 

  • Laurenz JC, Hadjisavas M, Bazer FW (1997b) Uteroferrin and recombinant bovine GM-CSF modulate the myelosuppressive effects of 5-fluorouracil in young female pigs. Comp Biochem Physiol 118B:569–577

    Article  CAS  Google Scholar 

  • Laurenz JC, Hadjusavas M, Bazer FW (1997c) The effect of uteroferrin and recombinant bovine GM-CSF on hematopoietic parameters in young female pigs. Comp Biochem Physiol 118B:579–586

    Article  CAS  Google Scholar 

  • Lausch E, Janecke A, Bros M et al (1996) Inhibition of human erythroid colony-forming units by interferons alpha and beta: differing mechanisms despite shared receptor. Exp Hematol 24:204–208

    Google Scholar 

  • Li XL, Bazer FW, Johnson GA et al (2014) Dietary supplementation with l-arginine between days 14 and 25 of gestation enhances embryonic development and survival in gilts. Amino Acids 46:375–384

    Article  CAS  PubMed  Google Scholar 

  • Martin PM, Sutherland AE (2001) Exogenous amino acids regulate trophectoderm differentiation in the mouse blastocyst through an mTOR-dependent pathway. Dev Biol 240:182–193

    Article  CAS  PubMed  Google Scholar 

  • Martin PM, Sutherland AE, Winkle LJV (2003) Amino acid transport regulates blastocyst implantation. Biol Reprod 69:1101–1108

    Article  CAS  PubMed  Google Scholar 

  • Mateo RD, Wu G, Bazer FW et al (2007) Dietary l-arginine supplementation enhances the reproductive performance of gilts. J Nutr 137:652–656

    CAS  PubMed  Google Scholar 

  • Mehrotra PK, Kitchlu S, Farheen S (1998) Effect of inhibitors of enzymes involved in polyamine biosynthesis pathway on pregnancy in mouse and hamster. Contraception 57:55–60

    Article  CAS  PubMed  Google Scholar 

  • Pendeville H, Carpino N, Marine JC et al (2001) The ornithine decarboxylase gene is essential for cell survival during early murine development. Mol Cell Biol 21:6549–6558

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Platanias LC (2005) Mechanisms of type-I- and type-II-interferon-mediated signalling. Nat Rev Immunol 5:375–386

    Article  CAS  PubMed  Google Scholar 

  • Poulin R, Casero RA, Soulet D (2012) Recent advances in the molecular biology of metazoan polyamine transport. Amino Acids 42:711–723

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Regnault TR, de Vrijer B, Battaglia FC (2002) Transport and metabolism of amino acids in placenta. Endocrine 19:23–41

    Article  CAS  PubMed  Google Scholar 

  • Renegar RH, Bazer FW, Roberts RM (1982) Placental transport and distribution of uteroferrin in the fetal pig. Biol Reprod 27:1247–1260

    Article  CAS  PubMed  Google Scholar 

  • Reynolds LP, Borowicz PP, Vonnahme KA et al (2005) Animal models of placental angiogenesis. Placenta 26:689–708

    Article  CAS  PubMed  Google Scholar 

  • Roberts RM, Raub TJ, Bazer FW (1986) Role of uteroferrin in transplacental iron transport in the pig. Fed Proc 45:2513–2518

    CAS  PubMed  Google Scholar 

  • Satterfield MC, Hayashi K, Song G et al (2008) Progesterone regulates FGF10, MET, IGFBP1, and IGFBP3 in the endometrium of the ovine uterus. Biol Reprod 79:1226–1236

    Article  CAS  PubMed  Google Scholar 

  • Satterfield MC, Bazer FW, Spencer TE, Wu G (2010) Sildenafil citrate treatment enhances amino acid availability in the conceptus and fetal growth in an ovine model of intrauterine growth restriction. J Nutr 140:251–258

    Article  CAS  PubMed  Google Scholar 

  • Satterfield MC, Dunlap KA, Keisler DH et al (2012) Arginine nutrition and fetal brown adipose tissue development in diet-induced obese sheep. Amino Acids 43:1593–1603

    Article  Google Scholar 

  • Satterfield MC, Dunlap KA, Keisler DH et al (2013) Arginine nutrition and fetal brown adipose tissue development in nutrient-restricted sheep. Amino Acids 45:489–499

    Article  CAS  PubMed  Google Scholar 

  • Saunders PT, Renegar RH, Raub TJ et al (1985) The carbohydrate structure of porcine uteroferrin and the role of the high mannose chains in promoting uptake by the reticuloendothelial cells of the fetal liver. J Biol Chem 260:3658–3665

    CAS  PubMed  Google Scholar 

  • Saxena D, Purohit SB, Kumar P et al (2000) Increased appearance of inducible nitric oxide synthase in the uterus and embryo at implantation. Biol Chem 4:384–391

    CAS  Google Scholar 

  • Spencer TE, Bazer FW (2002) Biology of progesterone action during pregnancy recognition and maintenance of pregnancy. Front Biosci 7:1879–1898

    Article  Google Scholar 

  • Spencer TE, Ott TL, Bazer FW (1998) Expression of interferon regulatory factors one and two in the ovine endometrium: effects of pregnancy and ovine interferon tau. Biol Reprod 58:1154–1162

    Article  CAS  PubMed  Google Scholar 

  • Spencer TE, Johnson GA, Bazer FW et al (2007) Fetal-maternal interactions during the establishment of pregnancy in ruminants. Soc Reprod Fertil Suppl 64:379–396

    CAS  PubMed  Google Scholar 

  • Steven DH (1975) Comparative Placentation. Essays in Structure and Function. Academic Press, London

    Google Scholar 

  • Suter A, Everts V, Boyde A et al (2001) Overlapping functions of lysosomal acid phosphatase (LAP) and tartrate-resistant acid phosphatase (Acp5) revealed by doubly deficient mice. Development 128:4899–4910

    CAS  PubMed  Google Scholar 

  • Verrey F, Closs EI, Wagner CA et al (2004) CATs and HATs: the SLC7 family of amino acid transporters. Pflug Arch 447:532–542

    Article  CAS  Google Scholar 

  • Wang X, Frank JW, Little DR et al (2014a) Functional role of arginine during the peri-implantation period of pregnancy. I. Consequences of loss of function of arginine transporter slc7a1 mRNA in ovine conceptus trophectoderm. FASEB J 28:2852–2863

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Frank JW, Xu J et al (2014b) Functional role of arginine during the peri-implantation period of pregnancy. II. Consequences of loss of function of nitric oxide synthase NOS3 mRNA in ovine conceptus trophectoderm. Biol Reprod 91:59

    Article  PubMed  Google Scholar 

  • Wang X, Ying W, Dunlap KA (2014c) Arginine decarboxylase and agmatinase: an alternative pathway for de novo biosynthesis of polyamines for development of mammalian conceptuses. Biol Reprod 90:1–15

    Article  Google Scholar 

  • Wilkinson KD (2000) Ubiquitination and deubiquitination: targeting of proteins for degradation by the proteasome. Cell Dev Biol 11:141–148

    Article  CAS  Google Scholar 

  • Wu G, Bazer FW, Cudd TA et al (2004) Maternal nutrition and fetal development. J Nutr 134:2169–2172

    CAS  PubMed  Google Scholar 

  • Wu G, Bazer FW, Hu J et al (2005) Polyamine synthesis from proline in the developing porcine placenta. Biol Reprod 72:842–850

    Article  CAS  PubMed  Google Scholar 

  • Wu G, Bazer FW, Cudd TA et al (2007a) Pharmacokinetics and safety of arginine supplementation in animals. J Nutr 137:1673S–1680S

    CAS  PubMed  Google Scholar 

  • Wu G, Bazer FW, Davis TA et al (2007b) Important roles for the arginine family of amino acids in swine nutrition and production. Livest Sci 112:8–22

    Article  Google Scholar 

  • Wu G, Bazer FW, Davis TA et al (2009) Arginine metabolism and nutrition in growth, health and disease. Amino Acids 37:153–168

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wu G, Imhoff-Kunsch B, Girard AW (2012) Biological mechanisms for nutritional regulation of maternal health and fetal development. Paediatr Perinat Epidemiol 26(Suppl 1):4–26

    Article  PubMed  Google Scholar 

  • Wu G, Wu Z, Dai Z et al (2013a) Dietary requirements of “nutritionally nonessential amino acids” by animals and humans. Amino Acids 44:1107–1113

    Article  CAS  PubMed  Google Scholar 

  • Wu G, Bazer FW, Johnson GA et al (2013b) Maternal and fetal amino acid metabolism in gestating sows. Soc Reprod Fertil Suppl 68:185–198

    Google Scholar 

  • Wynn M, Wynn A (1988) Nutrition around conception and the prevention of low birthweight. Nutr Health 6:37–52

    Article  CAS  PubMed  Google Scholar 

  • Ying W, Bazer FW, Zhou B (2014) Uteroferrin enhances fetal erythropoiesis at terminal stages. Endocrinology 155:4521–4530

  • Zeng XF, Wang FL, Fan X et al (2008) Dietary arginine supplementation during early pregnancy enhances embryonic survival in rats. J Nutr 138:1421–1425

    CAS  PubMed  Google Scholar 

  • Zeng X, Mao X, Huang Z et al (2013) Arginine enhances embryo implantation in rats through PI3K/PKB/mTOR/NO signaling pathway during early pregnancy. Reproduction 145:1–7

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Socolovsky M, Gross AW et al (2003) Role of Ras signaling in erythroid differentiation of mouse fetal liver cells: functional analysis by a flow cytometry-based novel culture system. Blood 102:3938–3946

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Research in our laboratories was supported by National Research Initiative Competitive Grants from the Animal Reproduction Program (2008-35203-19120, 2009-35206-05211, 2011-67015-20067, and 2011-67015-20028) and Animal Growth & Nutrient Utilization Program (2008-35206-18764) of the USDA National Institute of Food and Agriculture, American Heart Association (10GRNT4480020, 13PRE17050104), National Institute of Health (1R01DK098662), Amercian Diabetes Association(1-13-JF-59), and Texas A&M AgriLife Research (H-8200). The important contributions of our graduate students and colleagues in this research are gratefully acknowledged.

Conflict of interest

The authors declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fuller W. Bazer.

Additional information

Handling Editor: G. Lubec.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bazer, F.W., Ying, W., Wang, X. et al. The many faces of interferon tau. Amino Acids 47, 449–460 (2015). https://doi.org/10.1007/s00726-014-1905-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-014-1905-x

Keywords

Navigation