Skip to main content
Log in

Modulation of GABA-A receptors of astrocytes and STC-1 cells by taurine structural analogs

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Taurine activates and modulates GABA receptors in vivo as well as those expressed in heterologous systems. This study aimed to determine whether the structural analogs of taurine: homotaurine and hypotaurine, have the ability to activate GABA-A receptors that include GABAρ subunits. The expression of GABA-A receptors containing GABAρ has been reported in the STC-1 cells and astrocytes. In both cell types, taurine, homo-, and hypotaurine gated with low efficiency a picrotoxin-sensitive GABA-A receptor. The known bimodal modulatory effect of taurine on GABAρ receptors was not observed; however, differences between the activation and deactivation rates were detected when they were perfused together with GABA. In silico docking simulations suggested that taurine, hypo-, and homotaurine do not form a cation–π interaction such as that generated by GABA in the agonist-binding site of GABAρ. This observation complements the electrophysiological data suggesting that taurine and its analogs act as partial agonists of GABA-A receptors. All the observations above suggest that the structural analogs of taurine are partial agonists of GABA-A receptors that occupy the agonist-binding site, but their structures do not allow the proper interaction with the receptor to fully gate its Cl channel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

DMEM:

Dulbecco’s modified eagle’s medium

FBS:

Fetal bovine serum

GABA:

γ-amminobutyric acid

GLIC:

Gloebacter ion channel

EGTA:

Ethylene glycol tetraacetic acid

GluCl:

Glutamate-gated ion channel

HEPES:

2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid

ICM:

Internal coordinate mechanics

RsT:

Rise time constant

STC-1:

Secretin tumor cell line

TPMPA:

(1,2,5,6-Tetrahydropyridin-4-yl)methylphosphinic acid

References

  • Bocquet N, Nury H, Baaden M, Le Poupon C, Changeux JP, Delarue M, Corringer PJ (2009) X-ray structure of a pentameric ligand-gated ion channel in an apparently open conformation. Nature 457:111–114

    Article  PubMed  CAS  Google Scholar 

  • Bormann J, Kettenmann H (1988) Patch-clamp study of γ-aminobutyric acid receptor Cl- channels in cultured astrocytes. Proc Natl Acad Sci USA 85:9336–9340

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Brejc K, van Dijk WJ, Klaassen RV, Schuurmans M, van Der Oost J, Smit AB, Sixma TK (2001) Crystal structure of an ACh-binding protein reveals the ligand-binding domain of nicotinic receptors. Nature 411:269–276

    Article  PubMed  CAS  Google Scholar 

  • Bureau MH, Olsen RW (1991) Taurine acts on a subclass of GABAA receptors in mammalian brain in vitro. Eur J Pharmacol 207:9–16

    Article  PubMed  CAS  Google Scholar 

  • Chan-Palay V, Ito M, Tongroach P, Sakurai M, Palay S (1982) Inhibitory effects of motilin, somatostatin, [Leu]enkephalin, [Met]enkephalin, and taurine on neurons of the lateral vestibular nucleus: interactions with gamma-aminobutyric acid. Proc Natl Acad Sci USA 79:3355–3359

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • ElIdrissi A, Trenkner E (2004) Taurine as a modulator of excitatory and inhibitory neurotransmission. Neurochem Res 29:189–197

    Article  CAS  Google Scholar 

  • Fontana M, Pecci L, Duprè S, Cavallini D (2004) Antioxidant properties of sulfinates: protective effect of hypotaurine on peroxynitrite-dependent damage. Neurochem Res 29:111–116

    Article  PubMed  CAS  Google Scholar 

  • Frosini M, Sesti C, Dragoni S, Valoti M, Palmi M, Dixon HBF, Machetti F, Sgaragli G (2003) Interactions of taurine and structurally related analogues with the GABAergic system and taurine binding sites of rabbit brain. Br J Pharmacol 138:1163–1171

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Glassmeier G, Herzig KH, Höpfner M, Lemmer K, Jansen A, Scherubl H (1998) Expression of functional GABAA receptors in cholecystokinin-secreting gut neuroendocrine murine STC-1 cells. J Physiol 510:805–814

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Guérin P, Guillaud J, Ménézo Y (1995) Hypotaurine in spermatozoa and genital secretions and its production by oviduct epithelial cells in vitro. Hum Reprod 10:866–872

    PubMed  Google Scholar 

  • Hadley SH, Amin J (2007) Rat α6β2δ GABAA receptors exhibit two distinct and separable agonist affinities. J Physiol 581:1001–1018

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Hamill OP, Marty A, Neher E, Sakmann B, Sigworth FJ (1981) Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch 391:85–100

    Article  PubMed  CAS  Google Scholar 

  • Hibbs RE, Gouaux E (2011) Principles of activation and permeation in an anion-selective Cys-loop receptor. Nature 474:54–60

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Horikoshi T, Asanuma A, Yanagisawa K, Anzai K, Goto S (1998) Taurine and β-alanine act on both GABA and glycine receptors in Xenopus oocyte injected with mouse brain messenger RNA. Brain Res 464:97–105

    Google Scholar 

  • Jansen A, Hoepfner M, Herzig KH, Riecken EO, Scherübl H (2000) GABAC receptors in neuroendocrine gut cells: a new GABA-binding site in the gut. Pflugers Arch 441:294–300

    Article  PubMed  CAS  Google Scholar 

  • Kanbara K, Mori Y, Kubota T, Watanabe M, Yanagawa Y, Otsuki Y (2011) Expression of the GABAA receptor/chloride channel in murine spermatogenic cells. Histol Histopathol 26:95–106

    PubMed  CAS  Google Scholar 

  • Le-Corronc H, Rigo JM, Branchereau P, Legendre P (2011) GABAA receptor and glycine receptor activation by paracrine/autocrine release of endogenous agonists: more than a simple communication pathway. Mol Neurobiol 44:28–52

    Article  PubMed  CAS  Google Scholar 

  • Li S, Zhang Y, Liu H, Yan Y, Li Y (2008) Identification and expression of GABAC receptor in rat testis and spermatozoa. Acta Biochim Biophys Sin 40:761–767

    Article  PubMed  CAS  Google Scholar 

  • Lummis SC, L Beene D, Harrison NJ, Lester HA, Dougherty DA (2005) A cation-π binding interaction with a tyrosine in the binding site of the GABAC receptor. Chem Biol 12:993–997

    Article  PubMed  CAS  Google Scholar 

  • Machuca-Parra AI, Miledi R, Martínez-Torres A (2013) Identification of the minimal promoter for specific expression of the GABAρ1 receptor in retinal bipolar cells. J Neurochem 124:175–188

    Article  PubMed  CAS  Google Scholar 

  • Martínez-Delgado G, Estrada-Mondragón A, Miledi R, Martínez-Torres A (2008) An update on GABAρ receptors. Curr Neuropharmacol 8:422–433

    Article  Google Scholar 

  • Martínez-Delgado G, Reyes-Haro D, Espino-Saldaña AE, Rosas-Arellano A, Pétriz A, Juárez-Mercado P, Miledi R, Martínez-Torres A (2011) Dynamics of GABAρ2 receptors in retinal bipolar neurons and cerebellar astrocytes. Neuroreport 22:4–9

    Article  PubMed  Google Scholar 

  • Moran J, Morales-Mulia S, Hernandez-Cruz A, Pasantes-Morales H (1997) Regulatory volume decrease and associated osmolyte fluxes in cerebellar granule neurons are calcium independent. J Neurosci Res 47:144–154

    Article  PubMed  CAS  Google Scholar 

  • Mori M, Gähwiler BH, Gerber U (2002) β-Alanine and taurine as endogenous agonists at glycine receptors in rat hippocampus in vitro. J Physiol 539:191–200

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Ochoa-de la Paz LD, Martínez-Dávila IA, Miledi R, Martínez-Torres A (2008) Modulation of human GABAρ1 receptors by taurine. Neurosci Res 61:302–308

    Article  PubMed  CAS  Google Scholar 

  • Padgett CL, Hanek AP, Lester HA, Dougherty DA, Lummis SC (2007) Unnatural amino acid mutagenesis of the GABAA receptor binding site residues reveals a novel cation–π interaction between GABA and γ2Tyr97. J Neurosci 27:886–892

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Pasantes-Morales H, Moran J, Schousboe A (1990) Volume sensitive release of taurine from cultured astrocytes: properties and mechanism. Glia 3:427–432

    Article  PubMed  CAS  Google Scholar 

  • Polenzani L, Woodward RM, Miledi R (1991) Expression of mammalian γ-aminobutyric acid receptors with distinct pharmacology in Xenopus oocytes. Proc Natl Acad Sci USA 88:4318–4322

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Puente MA, Tartaglione CM, Ritta MN (2011) Bull sperm acrosome reaction induced by γ-aminobutyric acid (GABA) is mediated by GABAergic receptors type A. Anim Reprod Sci 127:31–37

    Article  PubMed  CAS  Google Scholar 

  • Quinn MR, Miller CL (1992) Taurine allosterically modulates flunitrazepam binding to synaptic membranes. J Neurosci Res 33:136–141

    Article  PubMed  CAS  Google Scholar 

  • Reyes-Haro D, Miledi R, García-Colunga J (2005) Potassium currents in primary cultured astrocytes from the rat corpus callosum. J Neurocytol 34:411–420

    Article  PubMed  CAS  Google Scholar 

  • Ripps H, Shen W (2012) Taurine: a “very essential” amino acid. Mol Vis 18:2673–2686

    PubMed  CAS  PubMed Central  Google Scholar 

  • Rodríguez-Navarro JA, Gonzalo-Gobernado R, Herranz AS, González-Vigueras JM, Solís JM (2009) High potassium induces taurine release by osmosensitive and osmoresistant mechanisms in the rat hippocampus in vivo. J Neurosci Res 87:208–217

    Article  PubMed  Google Scholar 

  • Santa-Maria I, Hernández F, Del Rio J, Moreno FJ, Avila J (2007) Tramiprosate, a drug of potential interest for the treatment of Alzheimer’s disease, promotes an abnormal aggregation of tau. Mol Neurodegener 2:17

    Article  PubMed  PubMed Central  Google Scholar 

  • Serrano MI, Serrano JS, Fernández A, Asadi I, Serrano-Martino MC (1998) GABAB receptors and opioid mechanisms involved in homotaurine-induced analgesia. Gen Pharmacol 30:411–415

    Article  PubMed  CAS  Google Scholar 

  • Shimada S, Cutting G, Uhl GR (1992) γ-Aminobutyric acid A or C receptor? γ-Aminobutyric acid ρ1 receptor RNA induces bicuculline-, barbiturate-, and benzodiazepine-insensitive γ -aminobutyric acid responses in Xenopus oocytes. Mol Pharmacol 41:683–687

    PubMed  CAS  Google Scholar 

  • Wu ZY, Xu TL (2003) Taurine-evoked chloride current and its potentiation by intracellular Ca2+ in immature rat hippocampal CA1 neurons. Amino Acids 24:155–161

    PubMed  CAS  Google Scholar 

  • Yamori Y, Taguchi T, Hamada A, Kunimasa K, Mori H, Mori M (2010) Taurine in health and diseases: consistent evidence from experimental and epidemiological studies. J Biomed Sci 17(Suppl 1):S1–S6

    Article  Google Scholar 

  • Yang J, Wu G, Feng Y, Lv Q, Lin S, Hu J (2010) Effects of taurine on male reproduction in rats of different ages. J Biomed Sci 17(Suppl 1):S1–S9

    Article  Google Scholar 

  • Zhang N, Ottersen OP (1992) Differential cellular distribution of two sulphur-containing amino acids in rat cerebellum. An immunocytochemical investigation using antisera to taurine and homocysteic acid. Exp Brain Res 90:11–20

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank E. Ruiz Alcíbar and A. E. Espino Saldaña for technical support and Dr. Dorothy Pless for reviewing the manuscript. This work was supported by grants from CONACYT (220224 and 166964), PAPIIT-UNAM (IN206411, 205308, RR280412-2, 200913), and IACOD-UNAM (IA202411-22).

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ataúlfo Martínez-Torres.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reyes-Haro, D., Cabrera-Ruíz, E., Estrada-Mondragón, A. et al. Modulation of GABA-A receptors of astrocytes and STC-1 cells by taurine structural analogs. Amino Acids 46, 2587–2593 (2014). https://doi.org/10.1007/s00726-014-1813-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-014-1813-0

Keywords

Navigation