Skip to main content

Advertisement

Log in

Changes of several brain receptor complexes in the cerebral cortex of patients with Alzheimer disease: probable new potential pharmaceutical targets

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Although Alzheimer disease (AD) has been linked to defects in major brain receptors, studies thus far have been limited to the determination of receptor subunits or specific ligand binding studies. However, the availability of current technology enables the determination and quantification of brain receptor complexes. Thus, we examined levels of native receptor complexes in the brains of patients with AD. Cortical tissue was obtained from control subjects (n = 12 females and 12 males) and patients with AD (n = 12 females and 12 males) within a 3-h postmortem time period. The tissues were kept frozen until further biochemical analyses. Membrane proteins were extracted and subsequently enriched by ultracentrifugation using a sucrose gradient. Membrane proteins were then electrophoresed onto native gels and immunoblotted using antibodies against individual brain receptors. We found that the levels were comparable for complexes containing GluR2, GluR3 and GluR4 as well as 5-HT1A. Moreover, the levels of complexes containing muscarinic AChR M1, NR1 and GluR1 were significantly increased in male patients with AD. Nicotinic AChRs 4 and 7 as well as dopaminergic receptors D1 and D2 were also increased in males and females with AD. These findings reveal a pattern of altered receptor complex levels that may contribute to the deterioration of the concerted activity of these receptors and thus result in cognitive deficits observed in patients with AD. It should be emphasised that receptor complexes function as working units rather than individual subunits. Thus, the receptor deficits identified may be relevant for the design of experimental therapies. Therefore, specific pharmacological modulation of these receptors is within the pharmaceutical repertoire.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bartus RT, Dean RL 3rd, Beer B, Lippa AS (1982) The cholinergic hypothesis of geriatric memory dysfunction. Science 217(4558):408–414

    Article  CAS  PubMed  Google Scholar 

  • Beach TG, Sue LI, Walker DG, Roher AE, Lue L, Vedders L, Connor DJ, Sabbagh MN, Rogers J (2008) The Sun Health Research Institute brain donation program: description and experience, 1987–2007. Cell Tissue Bank 9(3):229–245

    Article  PubMed Central  PubMed  Google Scholar 

  • Bernareggi A, Duenas Z, Reyes-Ruiz JM, Ruzzier F, Miledi R (2007) Properties of glutamate receptors of Alzheimer’s disease brain transplanted to frog oocytes. Proc Natl Acad Sci USA 104(8):2956–2960

    Article  CAS  PubMed  Google Scholar 

  • Braak H, Rub U, Schultz C, Del Tredici K (2006) Vulnerability of cortical neurons to Alzheimer’s and Parkinson’s diseases. J Alzheimers Dis 9(3 Suppl):35–44

    CAS  PubMed  Google Scholar 

  • Buckingham SD, Jones AK, Brown LA, Sattelle DB (2009) Nicotinic acetylcholine receptor signalling: roles in Alzheimer’s disease and amyloid neuroprotection. Pharmacol Rev 61(1):39–61

    Article  CAS  PubMed  Google Scholar 

  • Bussiere T, Giannakopoulos P, Bouras C, Perl DP, Morrison JH, Hof PR (2003) Progressive degeneration of nonphosphorylated neurofilament protein-enriched pyramidal neurons predicts cognitive impairment in Alzheimer’s disease: stereologic analysis of prefrontal cortex area 9. J Comp Neurol 463(3):281–302

    Article  CAS  PubMed  Google Scholar 

  • Calabresi P, Picconi B, Tozzi A, Di Filippo M (2007) Dopamine-mediated regulation of corticostriatal synaptic plasticity. Trends Neurosci 30(5):211–219

    Article  CAS  PubMed  Google Scholar 

  • Chang PK, Verbich D, McKinney RA (2012) AMPA receptors as drug targets in neurological disease: advantages, caveats, and future outlook. Eur J Neurosci 35(12):1908–1916

    Article  PubMed  Google Scholar 

  • Chen P, Li X, Sun Y, Liu Z, Cao R, He Q, Wang M, Xiong J, Xie J, Wang X, Liang S (2006) Proteomic analysis of rat hippocampal plasma membrane: characterization of potential neuronal-specific plasma membrane proteins. J Neurochem 98(4):1126–1140

    Article  CAS  PubMed  Google Scholar 

  • Cummings JL (2004) Alzheimer’s disease. N Engl J Med 351(1):56–67

    Article  CAS  PubMed  Google Scholar 

  • D’Andrea MR, Nagele RG (2006) Targeting the alpha 7 nicotinic acetylcholine receptor to reduce amyloid accumulation in Alzheimer’s disease pyramidal neurons. Curr Pharm Des 12(6):677–684

    Article  PubMed  Google Scholar 

  • de Bartolomeis A, Fiore G, Iasevoli F (2005) Dopamine-glutamate interaction and antipsychotics mechanism of action: implication for new pharmacological strategies in psychosis. Curr Pharm Des 11(27):3561–3594

    Article  PubMed  Google Scholar 

  • DeCarli C (2003) Mild cognitive impairment: prevalence, prognosis, aetiology, and treatment. Lancet Neurol 2(1):15–21

    Article  PubMed  Google Scholar 

  • Derkach VA, Oh MC, Guire ES, Soderling TR (2007) Regulatory mechanisms of AMPA receptors in synaptic plasticity. Nat Rev 8(2):101–113

    Article  CAS  Google Scholar 

  • El-Ghundi M, O’Dowd BF, George SR (2001) Prolonged fear responses in mice lacking dopamine D1 receptor. Brain Res 892(1):86–93

    Article  CAS  PubMed  Google Scholar 

  • Francis PT (2003) Glutamatergic systems in Alzheimer’s disease. Int J Geriatr Psychiatry 18(Suppl 1):S15–S21

    Article  PubMed  Google Scholar 

  • Francis PT, Palmer AM, Snape M, Wilcock GK (1999) The cholinergic hypothesis of Alzheimer’s disease: a review of progress. J Neurol Neurosurg Psychiatry 66(2):137–147

    Article  CAS  PubMed  Google Scholar 

  • Gao C, Sun X, Wolf ME (2006) Activation of D1 dopamine receptors increases surface expression of AMPA receptors and facilitates their synaptic incorporation in cultured hippocampal neurons. J Neurochem 98(5):1664–1677

    Article  CAS  PubMed  Google Scholar 

  • Ghafari M, Falsafi SK, Hoeger H, Lubec G (2012a) Hippocampal levels of GluR1 and GluR2 complexes are modulated by training in the multiple T-maze in C57BL/6 J mice. Brain structure & function 217(2):353–362

    Article  CAS  Google Scholar 

  • Ghafari M, Hoger H, Keihan Falsafi S, Russo-Schlaff N, Pollak A, Lubec G (2012b) Mass spectrometrical identification of hippocampal NMDA receptor subunits NR1, NR2A-D and five novel phosphorylation sites on NR2A and NR2B. J Proteome Res 11(3):1891–1896

    Article  CAS  PubMed  Google Scholar 

  • Ghidoni R, Paterlini A, Benussi L (2013) Translational proteomics in Alzheimer’s disease and related disorders. Clin Biochem 46(6):480–486

    Article  CAS  PubMed  Google Scholar 

  • Gotti C, Moretti M, Bohr I, Ziabreva I, Vailati S, Longhi R, Riganti L, Gaimarri A, McKeith IG, Perry RH, Aarsland D, Larsen JP, Sher E, Beattie R, Clementi F, Court JA (2006) Selective nicotinic acetylcholine receptor subunit deficits identified in Alzheimer’s disease, Parkinson’s disease and dementia with Lewy bodies by immunoprecipitation. Neurobiol Dis 23(2):481–489

    Article  CAS  PubMed  Google Scholar 

  • Grammas P (2011) Neurovascular dysfunction, inflammation and endothelial activation: implications for the pathogenesis of Alzheimer’s disease. J Neuroinflammation 8:26

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Groessl M, Luksch H, Rosen-Wolff A, Shevchenko A, Gentzel M (2012) Profiling of the human monocytic cell secretome by quantitative label-free mass spectrometry identifies stimulus-specific cytokines and proinflammatory proteins. Proteomics 12(18):2833–2842

    Article  CAS  PubMed  Google Scholar 

  • Guarraci FA, Frohardt RJ, Falls WA, Kapp BS (2000) The effects of intra-amygdaloid infusions of a D2 dopamine receptor antagonist on Pavlovian fear conditioning. Behav Neurosci 114(3):647–651

    Article  CAS  PubMed  Google Scholar 

  • Gurden H, Takita M, Jay TM (2000) Essential role of D1 but not D2 receptors in the NMDA receptor-dependent long-term potentiation at hippocampal-prefrontal cortex synapses in vivo. J Neurosci 20(22):RC106

    CAS  PubMed  Google Scholar 

  • Hallett PJ, Standaert DG (2004) Rationale for and use of NMDA receptor antagonists in Parkinson’s disease. Pharmacol Ther 102(2):155–174

    Article  CAS  PubMed  Google Scholar 

  • Hallett PJ, Spoelgen R, Hyman BT, Standaert DG, Dunah AW (2006) Dopamine D1 activation potentiates striatal NMDA receptors by tyrosine phosphorylation-dependent subunit trafficking. J Neurosci 26(17):4690–4700

    Article  CAS  PubMed  Google Scholar 

  • Kang SU, Fuchs K, Sieghart W, Lubec G (2008) Gel-based mass spectrometric analysis of recombinant GABA(A) receptor subunits representing strongly hydrophobic transmembrane proteins. J Proteome Res 7(8):3498–3506

    Article  CAS  PubMed  Google Scholar 

  • Kepe V, Barrio JR, Huang SC, Ercoli L, Siddarth P, Shoghi-Jadid K, Cole GM, Satyamurthy N, Cummings JL, Small GW, Phelps ME (2006) Serotonin 1A receptors in the living brain of Alzheimer’s disease patients. Proc Natl Acad Sci USA 103(3):702–707

    Article  CAS  PubMed  Google Scholar 

  • Kihara T, Shimohama S, Urushitani M, Sawada H, Kimura J, Kume T, Maeda T, Akaike A (1998) Stimulation of alpha4beta2 nicotinic acetylcholine receptors inhibits beta-amyloid toxicity. Brain Res 792(2):331–334

    Article  CAS  PubMed  Google Scholar 

  • Kihara T, Shimohama S, Sawada H, Honda K, Nakamizo T, Shibasaki H, Kume T, Akaike A (2001) alpha 7 nicotinic receptor transduces signals to phosphatidylinositol 3-kinase to block A beta-amyloid-induced neurotoxicity. J Biol Chem 276(17):13541–13546

    CAS  PubMed  Google Scholar 

  • Kowall NW, Beal MF (1991) Glutamate-, glutaminase-, and taurine-immunoreactive neurons develop neurofibrillary tangles in Alzheimer’s disease. Ann Neurol 29(2):162–167

    Article  CAS  PubMed  Google Scholar 

  • Martin-Ruiz CM, Court JA, Molnar E, Lee M, Gotti C, Mamalaki A, Tsouloufis T, Tzartos S, Ballard C, Perry RH, Perry EK (1999) Alpha4 but not alpha3 and alpha7 nicotinic acetylcholine receptor subunits are lost from the temporal cortex in Alzheimer’s disease. J Neurochem 73(4):1635–1640

    Article  CAS  PubMed  Google Scholar 

  • Mirra SS, Heyman A, McKeel D, Sumi SM, Crain BJ, Brownlee LM, Vogel FS, Hughes JP, van Belle G, Berg L (1991) The consortium to establish a registry for Alzheimer’s disease (CERAD) part II. Standardization of the neuropathologic assessment of Alzheimer’s disease. Neurology 41(4):479–486

    Article  CAS  PubMed  Google Scholar 

  • Ng J, Rashid AJ, So CH, O’Dowd BF, George SR (2010) Activation of calcium/calmodulin-dependent protein kinase IIalpha in the striatum by the heteromeric D1–D2 dopamine receptor complex. Neuroscience 165(2):535–541

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pandya AA, Yakel JL (2013) Activation of the alpha7 nicotinic ACh receptor induces anxiogenic effects in rats which is blocked by a 5-HT(1a) receptor antagonist. Neuropharmacology 70:35–42

    Article  CAS  PubMed  Google Scholar 

  • Petersen RC, Doody R, Kurz A, Mohs RC, Morris JC, Rabins PV, Ritchie K, Rossor M, Thal L, Winblad B (2001) Current concepts in mild cognitive impairment. Arch Neurol 58(12):1985–1992

    Article  CAS  PubMed  Google Scholar 

  • Revett TJ, Baker GB, Jhamandas J, Kar S (2012) Glutamate system, amyloid ss peptides and tau protein: functional interrelationships and relevance to Alzheimer disease pathology. J Psychiatry Neurosci 37(5):110190

    Google Scholar 

  • Rinaldi A, Mandillo S, Oliverio A, Mele A (2007) D1 and D2 receptor antagonist injections in the prefrontal cortex selectively impair spatial learning in mice. Neuropsychopharmacology 32(2):309–319

    Article  CAS  PubMed  Google Scholar 

  • Rusted JM, Newhouse PA, Levin ED (2000) Nicotinic treatment for degenerative neuropsychiatric disorders such as Alzheimer’s disease and Parkinson’s disease. Behav Brain Res 113(1–2):121–129

    Article  CAS  PubMed  Google Scholar 

  • Sabbagh MN, Shah F, Reid RT, Sue L, Connor DJ, Peterson LK, Beach TG (2006) Pathologic and nicotinic receptor binding differences between mild cognitive impairment, Alzheimer disease, and normal aging. Arch Neurol 63(12):1771–1776

    Article  PubMed  Google Scholar 

  • Smith WB, Starck SR, Roberts RW, Schuman EM (2005) Dopaminergic stimulation of local protein synthesis enhances surface expression of GluR1 and synaptic transmission in hippocampal neurons. Neuron 45(5):765–779

    Article  CAS  PubMed  Google Scholar 

  • Sun X, Zhao Y, Wolf ME (2005) Dopamine receptor stimulation modulates AMPA receptor synaptic insertion in prefrontal cortex neurons. J Neurosci 25(32):7342–7351

    Article  CAS  PubMed  Google Scholar 

  • Takada-Takatori Y, Kume T, Sugimoto M, Katsuki H, Sugimoto H, Akaike A (2006) Acetylcholinesterase inhibitors used in treatment of Alzheimer’s disease prevent glutamate neurotoxicity via nicotinic acetylcholine receptors and phosphatidylinositol 3-kinase cascade. Neuropharmacology 51(3):474–486

    Article  CAS  PubMed  Google Scholar 

  • Vijayraghavan S, Wang M, Birnbaum SG, Williams GV, Arnsten AF (2007) Inverted-U dopamine D1 receptor actions on prefrontal neurons engaged in working memory. Nat Neurosci 10(3):376–384

    Article  CAS  PubMed  Google Scholar 

  • Wang HY, Lee DH, D’Andrea MR, Peterson PA, Shank RP, Reitz AB (2000) beta-Amyloid(1–42) binds to alpha7 nicotinic acetylcholine receptor with high affinity. Implications for Alzheimer’s disease pathology. J Biol Chem 275(8):5626–5632

    Article  CAS  PubMed  Google Scholar 

  • Wevers A, Monteggia L, Nowacki S, Bloch W, Schutz U, Lindstrom J, Pereira EF, Eisenberg H, Giacobini E, de Vos RA, Steur EN, Maelicke A, Albuquerque EX, Schroder H (1999) Expression of nicotinic acetylcholine receptor subunits in the cerebral cortex in Alzheimer’s disease: histotopographical correlation with amyloid plaques and hyperphosphorylated-tau protein. Eur J Neurosci 11(7):2551–2565

    Article  CAS  PubMed  Google Scholar 

  • Willuhn I, Steiner H (2008) Motor-skill learning in a novel running-wheel task is dependent on D1 dopamine receptors in the striatum. Neuroscience 153(1):249–258

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Xu Y, Yan J, Zhou P, Li J, Gao H, Xia Y, Wang Q (2012) Neurotransmitter receptors and cognitive dysfunction in Alzheimer’s disease and Parkinson’s disease. Prog Neurobiol 97(1):1–13

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to the Banner Sun Health Research Institute Brain Donation Program of Sun City, Arizona, for the provision of human brain tissue. The Brain Donation Program is supported by the National Institute on Aging (P30 AG19610 Arizona Alzheimer’s Disease Core Center), the Arizona Department of Health Services (contract 211002, Arizona Alzheimer’s Research Center), the Arizona Biomedical Research Commission (contracts 4001, 0011, 05-901 and 1001 to the Arizona Parkinson’s Disease Consortium) and the Michael J. Fox Foundation for Parkinson’s Research.

Conflict of interest

The authors declare that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gert Lubec.

Additional information

S. Keihan Falsafi, S. Roßner, M. Ghafari are qually shared authorship.

Electronic supplementary material

Below is the link to the electronic supplementary material.

726_2013_1623_MOESM1_ESM.ppt

Supplemental Fig. 1 Arbitrary units of the optical density of receptor complexes were not significantly different between control subjects and patients with AD (PPT 13252 kb)

726_2013_1623_MOESM2_ESM.ppt

Supplemental Fig. 2 Arbitrary units of the optical density of receptor complexes were not significantly different between control subjects and patients with AD (PPT 13302 kb)

726_2013_1623_MOESM3_ESM.ppt

Supplemental Fig. 3 Arbitrary units of the optical density of receptor complexes were not significantly different between control subjects and patients with AD (PPT 5657 kb)

726_2013_1623_MOESM4_ESM.ppt

Supplemental Fig. 4 Arbitrary units of the optical density of receptor complexes were not significantly different between control subjects and patients with AD (PPT 19356 kb)

726_2013_1623_MOESM5_ESM.ppt

Supplemental Fig. 5 SDS-PAGE of the immunoprecipitate using the D1 receptor antibody. The D1 receptor and a single band containing NR1 as well as GluR1, 2 and 4 were identified by mass spectrometry (PPT 531 kb)

Supplemental Fig. 6 Representative mass spectra identifying D1, NR1, GluR1, 2 and 4 (PPT 522 kb)

726_2013_1623_MOESM7_ESM.doc

Supplemental Table 1 Representative Case numbers, gender, age and Braak scores of samples used for the analyses (DOC 119 kb)

726_2013_1623_MOESM8_ESM.ppt

Supplemental Table 2 (A) A full list of the associations among the receptor complexes in male (B) and female control subjects (PPT 121 kb)

726_2013_1623_MOESM9_ESM.ppt

Supplemental Table 3 (A) A full list of the associations among the receptor complexes in male and (B) female patients with AD (PPT 123 kb)

726_2013_1623_MOESM10_ESM.xls

Supplemental Table 4 A list of receptor peptides resulting from the in-gel digestion of the immunoprecipitate on the SDS-gel followed by mass spectrometrical analysis (XLS 41 kb)

Supplemental Table 5 Sequence coverage obtained by digestion with trypsin and chymotrypsin (PPT 70 kb)

Supplementary material 12(1a,b,c) (DOC 40 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Keihan Falsafi, S., Roßner, S., Ghafari, M. et al. Changes of several brain receptor complexes in the cerebral cortex of patients with Alzheimer disease: probable new potential pharmaceutical targets. Amino Acids 46, 223–233 (2014). https://doi.org/10.1007/s00726-013-1623-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-013-1623-9

Keywords

Navigation