Skip to main content
Log in

S-linked protein homocysteinylation: identifying targets based on structural, physicochemical and protein–protein interactions of homocysteinylated proteins

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

An elevated level of homocysteine, a thiol-containing amino acid is associated with a wide spectrum of disease conditions. A majority (>80 %) of the circulating homocysteine exist in protein-bound form. Homocysteine can bind to free cysteine residues in the protein or could cleave accessible cysteine disulfide bonds via thiol disulfide exchange reaction. Binding of homocysteine to proteins could potentially alter the structure and/or function of the protein. To date only 21 proteins have been experimentally shown to bind homocysteine. In this study we attempted to identify other proteins that could potentially bind to homocysteine based on the criteria that such proteins will have significant 3D structural homology with the proteins that have been experimentally validated and have solvent accessible cysteine residues either with high dihedral strain energy (for cysteine–cysteine disulfide bonds) or low pKa (for free cysteine residues). This analysis led us to the identification of 78 such proteins of which 68 proteins had 154 solvent accessible disulfide cysteine pairs with high dihedral strain energy and 10 proteins had free cysteine residues with low pKa that could potentially bind to homocysteine. Further, protein–protein interaction network was built to identify the interacting partners of these putative homocysteine binding proteins. We found that the 21 experimentally validated proteins had 174 interacting partners while the 78 proteins identified in our analysis had 445 first interacting partners. These proteins are mainly involved in biological activities such as complement and coagulation pathway, focal adhesion, ECM-receptor, ErbB signalling and cancer pathways, etc. paralleling the disease-specific attributes associated with hyperhomocysteinemia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

Hcy:

Homocysteine

DSE:

Dihedral strain energy

DSSP:

Dictionary of secondary structure prediction

PPI:

Protein–protein interaction

DAVID:

Database for annotation, visualization and integrated discovery

GO:

Gene ontology

CC:

Cellular compartment

BP:

Biological process

MF:

Molecular function

References

  • Ahamed J, Versteeg HH, Kerver M, Chen VM, Mueller BM et al (2006) Disulfide isomerization switches tissue factor from coagulation to cell signaling. Proc Natl Acad Sci USA 103:13932–13937

    Article  PubMed  CAS  Google Scholar 

  • Anandakrishnan R, Aguilar B, Onufriev AV (2012) H++3.0: automating pK prediction and the preparation of biomolecular structures for atomistic molecular modeling and simulations. Nucleic Acids Res 40:W537–W541

    Article  PubMed  CAS  Google Scholar 

  • Andersson A, Lindgren A, Hultberg B (1995) Effect of thiol oxidation and thiol export from erythrocytes on determination of redox status of homocysteine and other thiols in plasma from healthy subjects and patients with cerebral infarction. Clin Chem 41:361–366

    PubMed  CAS  Google Scholar 

  • Assenov Y, Ramirez F, Schelhorn SE, Lengauer T, Albrecht M (2008) Computing topological parameters of biological networks. Bioinformatics 24:282–284

    Article  PubMed  CAS  Google Scholar 

  • Barsky A, Gardy JL, Hancock RE, Munzner T (2007) Cerebral: a Cytoscape plugin for layout of and interaction with biological networks using subcellular localization annotation. Bioinformatics 23:1040–1042

    Article  PubMed  CAS  Google Scholar 

  • Chuang CC, Chen CY, Yang JM, Lyu PC, Hwang JK (2003) Relationship between protein structures and disulfide-bonding patterns. Proteins 53:1–5

    Article  PubMed  CAS  Google Scholar 

  • da Huang W, Sherman BT, Lempicki RA (2009a) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4:44–57

    Article  CAS  Google Scholar 

  • da Huang W, Sherman BT, Lempicki RA (2009b) Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res 37:1–13

    Article  Google Scholar 

  • de Vries JI, Dekker GA, Huijgens PC, Jakobs C, Blomberg BM et al (1997) Hyperhomocysteinaemia and protein S deficiency in complicated pregnancies. Br J Obstet Gynaecol 104:1248–1254

    Article  PubMed  Google Scholar 

  • Eikelboom JW, Lonn E, Genest J Jr, Hankey G, Yusuf S (1999) Homocyst(e)ine and cardiovascular disease: a critical review of the epidemiologic evidence. Ann Intern Med 131:363–375

    PubMed  CAS  Google Scholar 

  • Gelly JC, Joseph AP, Srinivasan N, de Brevern AG (2011) iPBA: a tool for protein structure comparison using sequence alignment strategies. Nucleic Acids Res 39:W18–W23

    Article  PubMed  CAS  Google Scholar 

  • Gilbert HF (1995) Thiol/disulfide exchange equilibria and disulfide bond stability. Methods Enzymol 251:8–28

    Article  PubMed  CAS  Google Scholar 

  • Hernandez-Toro J, Prieto C, De las Rivas J (2007) APID2NET: unified interactome graphic analyzer. Bioinformatics 23:2495–2497

    Article  PubMed  CAS  Google Scholar 

  • Jacobsen DW, Catanescu O, Dibello PM, Barbato JC (2005) Molecular targeting by homocysteine: a mechanism for vascular pathogenesis. Clin Chem Lab Med 43:1076–1083

    Article  PubMed  CAS  Google Scholar 

  • Kabsch W, Sander C (1983) Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 22:2537–2577

    Article  Google Scholar 

  • Kirke PN, Mills JL, Scott JM (1997) Homocysteine metabolism in pregnancies complicated by neural tube defects. Nutrition 13:994–995

    Article  PubMed  CAS  Google Scholar 

  • Krissinel E, Henrick K (2007) Inference of macromolecular assemblies from crystalline state. J Mol Biol 372:774–797

    Article  PubMed  CAS  Google Scholar 

  • Majors AK, Sengupta S, Willard B, Kinter MT, Pyeritz RE et al (2002) Homocysteine binds to human plasma fibronectin and inhibits its interaction with fibrin. Arterioscler Thromb Vasc Biol 22:1354–1359

    Article  PubMed  CAS  Google Scholar 

  • Mansoor MA, Svardal AM, Ueland PM (1992) Determination of the in vivo redox status of cysteine, cysteinylglycine, homocysteine, and glutathione in human plasma. Anal Biochem 200:218–229

    Article  PubMed  CAS  Google Scholar 

  • Meigs JB, Jacques PF, Selhub J, Singer DE, Nathan DM et al (2001) Fasting plasma homocysteine levels in the insulin resistance syndrome: the Framingham offspring study. Diabetes Care 24:1403–1410

    Article  PubMed  CAS  Google Scholar 

  • Minagawa H, Watanabe A, Akatsu H, Adachi K, Ohtsuka C et al (2010) Homocysteine, another risk factor for Alzheimer disease, impairs apolipoprotein E3 function. J Biol Chem 285:38382–38388

    Article  PubMed  CAS  Google Scholar 

  • Murzin AG, Brenner SE, Hubbard T, Chothia C (1995) SCOP: a structural classification of proteins database for the investigation of sequences and structures. J Mol Biol 247:536–540

    PubMed  CAS  Google Scholar 

  • Perry IJ, Refsum H, Morris RW, Ebrahim SB, Ueland PM et al (1995) Prospective study of serum total homocysteine concentration and risk of stroke in middle-aged British men. Lancet 346:1395–1398

    Article  PubMed  CAS  Google Scholar 

  • Regland B, Johansson BV, Grenfeldt B, Hjelmgren LT, Medhus M (1995) Homocysteinemia is a common feature of schizophrenia. J Neural Transm Gen Sect 100:165–169

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez R, Chinea G, Lopez N, Pons T, Vriend G (1998) Homology modeling, model and software evaluation: three related resources. Bioinformatics 14:523–528

    Article  PubMed  CAS  Google Scholar 

  • Schmidt B, Ho L, Hogg PJ (2006) Allosteric disulfide bonds. Biochemistry 45:7429–7433

    Article  PubMed  CAS  Google Scholar 

  • Sengupta S, Wehbe C, Majors AK, Ketterer ME, DiBello PM et al (2001a) Relative roles of albumin and ceruloplasmin in the formation of homocystine, homocysteine-cysteine-mixed disulfide, and cystine in circulation. J Biol Chem 276:46896–46904

    Article  PubMed  CAS  Google Scholar 

  • Sengupta S, Chen H, Togawa T, DiBello PM, Majors AK et al (2001b) Albumin thiolate anion is an intermediate in the formation of albumin-S-S-homocysteine. J Biol Chem 276:30111–30117

    Article  PubMed  CAS  Google Scholar 

  • Seshadri S, Beiser A, Selhub J, Jacques PF, Rosenberg IH et al (2002) Plasma homocysteine as a risk factor for dementia and Alzheimer’s disease. N Engl J Med 346:476–483

    Article  PubMed  CAS  Google Scholar 

  • Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT et al (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13:2498–2504

    Article  PubMed  CAS  Google Scholar 

  • Søndergaard CR, Olsson MHM, Rostkowski M, Jensen JH (2011) Improved treatment of ligands and coupling effects in empirical calculation and rationalization of pKa values. J Chem Theory Comput 7(7):2284–2295

    Article  Google Scholar 

  • Sundaramoorthy E, Maiti S, Brahmachari SK, Sengupta S (2008) Predicting protein homocysteinylation targets based on dihedral strain energy and pKa of cysteines. Proteins 71:1475–1543

    Article  PubMed  CAS  Google Scholar 

  • Tang YS, Khan RA, Zhang Y, Xiao S, Wang M et al (2011) Incrimination of heterogeneous nuclear ribonucleoprotein E1 (hnRNP-E1) as a candidate sensor of physiological folate deficiency. J Biol Chem 286:39100–39115

    Article  PubMed  CAS  Google Scholar 

  • Thangudu RR, Manoharan M, Srinivasan N, Cadet F, Sowdhamini R, Offmann B (2008) Analysis on conservation of disulphide bonds and their structural features in homologous protein domain families. BMC Struct Biol 8:55

    Article  PubMed  Google Scholar 

  • Weiner SJ, Kollman PA, Case DA, Singh UC, Ghio C, Alagona G, Profeta SJ, Weiner P (1984) A new force field for molecular mechanical simulation of nucleic acids and proteins. J Am Chem Soc 106:765–784

    Article  CAS  Google Scholar 

  • Wu CH, Apweiler R, Bairoch A, Natale DA, Barker WC et al (2006) The universal protein resource (UniProt): an expanding universe of protein information. Nucleic Acids Res 34:D187–D191

    Article  PubMed  CAS  Google Scholar 

  • Zemla A (2003) LGA:a method for finding 3D similarities in protein structures. Nucleic Acids Res 31:3370–3374

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank all members of the lab for their valuable suggestions. Y.S. is thankful to CSIR-Human Resource Development Group for fellowship.

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shantanu Sengupta.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Silla, Y., Sundaramoorthy, E., Talwar, P. et al. S-linked protein homocysteinylation: identifying targets based on structural, physicochemical and protein–protein interactions of homocysteinylated proteins. Amino Acids 44, 1307–1316 (2013). https://doi.org/10.1007/s00726-013-1465-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-013-1465-5

Keywords

Navigation