Skip to main content

Advertisement

Log in

Antitumor activity of novel chimeric peptides derived from cyclinD/CDK4 and the protein transduction domain 4

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

CyclinD1/CDK4 and cyclinD3/CDK4 complexes are key regulators of the cell progression and therefore constitute promising targets for the design of anticancer agents. In the present study, the key peptide motifs were selected from these two complexes. Chimeric peptides with these peptides conjugated to the protein transduction domain 4 (PTD4) were designed and synthesized. The chimeric peptides, PTD4-D1, PTD4-D3, PTD4-K4 exhibited significant anti-proliferation effects on cancer cell lines. These peptides could compete with the cyclinD/CDK4 complex and induce the G1/S phase arrest and apoptosis of cancer cells. In the tumor challenge experiment, these peptides showed potent antitumor effects with no significant side effects. Our results suggested that these peptides could be served as novel leading compounds with potent antitumor activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Andrews MJ, Kontopidis G, McInnes C, Plater A, Innes L, Cowan A, Jewsbury P, Fischer PM (2006) REPLACE: a strategy for iterative design of cyclin-binding groove inhibitors. ChemBioChem 7(12):1909–1915. doi:10.1002/cbic.200600189

    Article  PubMed  CAS  Google Scholar 

  • Caldon CE, Sutherland RL, Musgrove E (2010) Cell cycle proteins in epithelial cell differentiation: implications for breast cancer. Cell Cycle 9(10):1918–1928 pii:11474

    Article  PubMed  CAS  Google Scholar 

  • Chen W, Lee J, Cho SY, Fine HA (2004) Proteasome-mediated destruction of the cyclin a/cyclin-dependent kinase 2 complex suppresses tumor cell growth in vitro and in vivo. Cancer Res 64(11):3949–3957. doi:10.1158/0008-5472.CAN-03-3906

    Article  PubMed  CAS  Google Scholar 

  • Cooper K (2006) Rb, whi it’s not just for metazoans anymore. Oncogene 25(38):5228–5232. doi:10.1038/sj.onc.1209630

    Article  PubMed  CAS  Google Scholar 

  • Day PJ, Cleasby A, Tickle IJ, O’Reilly M, Coyle JE, Holding FP, McMenamin RL, Yon J, Chopra R, Lengauer C, Jhoti H (2009) Crystal structure of human CDK4 in complex with a D-type cyclin. Proc Natl Acad Sci USA 106(11):4166–4170. doi:10.1073/pnas.0809645106

    Article  PubMed  CAS  Google Scholar 

  • De Falco M, Luca De (2010) A Cell cycle as a target of antineoplastic drugs. Curr Pharm Des 16(12):1417–1426 pii:BSP/CPD/E-Pub/00043

    Article  PubMed  Google Scholar 

  • Echalier A, Endicott JA, Noble ME (2010) Recent developments in cyclin-dependent kinase biochemical and structural studies. Biochim Biophys Acta 1804(3):511–519. doi:10.1016/j.bbapap.2009.10.002

    Article  PubMed  CAS  Google Scholar 

  • Eiriksdottir E, Konate K, Langel U, Divita G, Deshayes S (2010) Secondary structure of cell-penetrating peptides controls membrane interaction and insertion. Biochim Biophys Acta 1798(6):1119–1128. doi:10.1016/j.bbamem.2010.03.005

    Article  PubMed  CAS  Google Scholar 

  • Emmerich J, Meyer CA, de la Cruz AF, Edgar BA, Lehner CF (2004) Cyclin D does not provide essential Cdk4-independent functions in Drosophila. Genetics 168(2):867–875. doi:10.1534/genetics.104.027417

    Article  PubMed  CAS  Google Scholar 

  • Gerard C, Goldbeter A (2009) Temporal self-organization of the cyclin/Cdk network driving the mammalian cell cycle. Proc Natl Acad Sci USA 106(51):21643–21648. doi:10.1073/pnas.0903827106

    Article  PubMed  CAS  Google Scholar 

  • Gondeau C, Gerbal-Chaloin S, Bello P, Aldrian-Herrada G, Morris MC, Divita G (2005) Design of a novel class of peptide inhibitors of cyclin-dependent kinase/cyclin activation. J Biol Chem 280(14):13793–13800. doi:10.1074/jbc.M413690200

    Article  PubMed  CAS  Google Scholar 

  • Gros E, Deshayes S, Morris MC, Aldrian-Herrada G, Depollier J, Heitz F, Divita G (2006) A non-covalent peptide-based strategy for protein and peptide nucleic acid transduction. Biochim Biophys Acta 1758(3):384–393. doi:10.1016/j.bbamem.2006.02.006

    Article  PubMed  CAS  Google Scholar 

  • Guo CP, Liu KW, Luo HB, Chen HB, Zheng Y, Sun SN, Zhang Q, Huang L (2011) Potent anti-tumor effect generated by a novel human papillomavirus (HPV) antagonist peptide reactivating the pRb/E2F pathway. PLoS One 6(3):e17734. doi:10.1371/journal.pone.0017734

    Article  PubMed  CAS  Google Scholar 

  • Hidema S, Tonomura Y, Date S, Nishimori K (2012) Effects of protein transduction with intact myogenic transcription factors tagged with HIV-1 Tat-PTD (T-PTD) on myogenic differentiation of mouse primary cells. J Biosci Bioeng. doi:10.1016/j.jbiosc.2011.08.025

    PubMed  Google Scholar 

  • Ho A, Schwarze SR, Mermelstein SJ, Waksman G, Dowdy SF (2001) Synthetic protein transduction domains: enhanced transduction potential in vitro and in vivo. Cancer Res 61(2):474–477

    PubMed  CAS  Google Scholar 

  • Honma T, Yoshizumi T, Hashimoto N, Hayashi K, Kawanishi N, Fukasawa K, Takaki T, Ikeura C, Ikuta M, Suzuki-Takahashi I, Hayama T, Nishimura S, Morishima H (2001) A novel approach for the development of selective Cdk4 inhibitors: library design based on locations of Cdk4 specific amino acid residues. J Med Chem 44(26):4628–4640 pii:jm010326y

    Article  PubMed  CAS  Google Scholar 

  • Hui X, Chen H, Zhang S, Ma X, Wang X, Huang B (2011) Antitumor activities of recombinant human interferon (IFN)-lambda1 in vitro and in xenograft models in vivo for colon cancer. Cancer Lett 311(2):141–151. doi:10.1016/j.canlet.2011.07.004

    Article  PubMed  CAS  Google Scholar 

  • Kudo Y, Kitajima S, Ogawa I, Miyauchi M, Takata T (2005) Down-regulation of Cdk inhibitor p27 in oral squamous cell carcinoma. Oral Oncol 41(2):105–116. doi:10.1016/j.oraloncology.2004.05.003

    Article  PubMed  CAS  Google Scholar 

  • Lange CA, Yee Killing D (2011) The second messenger: targeting loss of cell cycle control in endocrine-resistant breast cancer. Endocr Relat Cancer 18(4):C19–C24. doi:10.1530/ERC-11-0112

    Article  PubMed  CAS  Google Scholar 

  • Liu N, Fang H, Li Y, Xu W (2009) Recent research in selective cyclin-dependent kinase 4 inhibitors for anti-cancer treatment. Curr Med Chem 16(36):4869–4888 pii:CMC-AbsEpub-092

    Article  PubMed  CAS  Google Scholar 

  • Liu S, Bolger JK, Kirkland LO, Premnath PN, McInnes C (2010) Structural and functional analysis of cyclin D1 reveals p27 and substrate inhibitor binding requirements. ACS Chem Biol 5(12):1169–1182. doi:10.1021/cb1001262

    Article  PubMed  CAS  Google Scholar 

  • Lou H, Gao Y, Zhai M, Qi Y, Chen L, Lv H, Yu J, Li Y (2008) A novel peptide from alpha5 helix of Asterina pectinifera cyclin B conjugated to HIV-Tat(49–57) with cytotoxic and apoptotic effects against human cancer cells. Bioorg Med Chem Lett 18(16):4633–4637. doi:10.1016/j.bmcl.2008.07.017

    Article  PubMed  CAS  Google Scholar 

  • McInnes C, Andrews MJ, Zheleva DI, Lane DP, Fischer PM (2003) Peptidomimetic design of CDK inhibitors targeting the recruitment site of the cyclin subunit. Curr Med Chem Anticancer Agents 3(1):57–69

    Article  PubMed  CAS  Google Scholar 

  • Moeller SJ, Sheaff RJ (2006) G1 phase: components, conundrums, context. Results Probl Cell Differ 42:1–29

    Article  PubMed  CAS  Google Scholar 

  • Park JS, Kim HS, Park HM, Kim CH, Kim TG (2010) Efficient induction of anti-tumor immunity by a TAT-CEA fusion protein vaccine with poly(I:C) in a murine colorectal tumor model. Vaccine 29(47):8642–8648. doi:10.1016/j.vaccine.2011.09.052

    Article  Google Scholar 

  • Quintanilla-Martinez L, Davies-Hill T, Fend F, Calzada-Wack J, Sorbara L, Campo E, Jaffe ES, Raffeld M (2003) Sequestration of p27Kip1 protein by cyclin D1 in typical and blastic variants of mantle cell lymphoma (MCL): implications for pathogenesis. Blood 101(8):3181–3187. doi:10.1182/blood-2002-01-0263

    Article  PubMed  CAS  Google Scholar 

  • Rekdal O, Haug BE, Kalaaji M, Hunter HN, Lindin I, Israelsson I, Solstad T, Yang N, Brandl M, Mantzilas D, Vogel HJ (2012) The relative spatial positions of tryptophan and cationic residues in helical membrane-active peptides determines their cytotoxicity. J Biol Chem. doi:10.1074/jbc.M111.279281

    PubMed  Google Scholar 

  • Reynaud EG, Guillier M, Leibovitch MP, Leibovitch SA (2000) Dimerization of the amino terminal domain of p57Kip2 inhibits cyclin D1-cdk4 kinase activity. Oncogene 19(9):1147–1152. doi:10.1038/sj.onc.1203403

    Article  PubMed  CAS  Google Scholar 

  • Roy Choudhury S, Karmakar S, Banik NL, Ray SK (2011) Valproic acid induced differentiation and potentiated efficacy of taxol and nanotaxol for controlling growth of human glioblastoma LN18 and T98G cells. Neurochem Res 36(12):2292–2305. doi:10.1007/s11064-011-0554-7

    Article  PubMed  CAS  Google Scholar 

  • Sawai H, Domae N (2011) Discrimination between primary necrosis and apoptosis by necrostatin-1 in Annexin V-positive/propidium iodide-negative cells. Biochem Biophys Res Commun 411(3):569–573. doi:10.1016/j.bbrc.2011.06.186

    Article  PubMed  CAS  Google Scholar 

  • Shang W, Qiao J, Gu C, Yin W, Du J, Wang W, Zhu M, Han M, Lu W (2011) Anticancer activity of an extract from needles and twigs of Taxus cuspidata and its synergistic effect as a cocktail with 5-fluorouracil. BMC Complement Altern Med 11(1):123. doi:10.1186/1472-6882-11-123

    Article  PubMed  Google Scholar 

  • Singh RK, Lange TS, Kim KK, Brard L (2011) A coumarin derivative (RKS262) inhibits cell-cycle progression, causes pro-apoptotic signaling and cytotoxicity in ovarian cancer cells. Invest New Drugs 29(1):63–72. doi:10.1007/s10637-009-9335-4

    Article  PubMed  CAS  Google Scholar 

  • Strasberg Rieber M, Welch DR, Miele ME, Rieber M (1996) p53-independent increase in p21WAF1 and reciprocal down-regulation of cyclin A and proliferating cell nuclear antigen in bromodeoxyuridine-mediated growth arrest of human melanoma cells. Cell Growth Differ 7(2):197–202

    PubMed  CAS  Google Scholar 

  • Suojanen J, Vilen ST, Nyberg P, Heikkila P, Penate-Medina O, Saris PE, Hagstrom J, Ranta TM, Salo T, Sorsa T, Reunanen J (2011) Selective gelatinase inhibitor Peptide is effective in targeting tongue carcinoma cell tumors in vivo. Anticancer Res 31(11):3659–3664 pii:31/11/3659

    PubMed  CAS  Google Scholar 

  • Swanton C (2004) Cell-cycle targeted therapies. Lancet Oncol 5(1):27–36 pii:S1470204503013214

    Article  PubMed  CAS  Google Scholar 

  • Takaki T, Echalier A, Brown NR, Hunt T, Endicott JA, Noble ME (2009) The structure of CDK4/cyclin D3 has implications for models of CDK activation. Proc Natl Acad Sci USA 106(11):4171–4176. doi:10.1073/pnas.0809674106

    Article  PubMed  CAS  Google Scholar 

  • Thapa N, Kim S, So IS, Lee BH, Kwon IC, Choi K, Kim IS (2008) Discovery of a phosphatidylserine-recognizing peptide and its utility in molecular imaging of tumour apoptosis. J Cell Mol Med 12(5A):1649–1660. doi:10.1111/j.1582-4934.2008.00305

    Article  PubMed  CAS  Google Scholar 

  • Toogood PL (2001) Cyclin-dependent kinase inhibitors for treating cancer. Med Res Rev 21(6):487–498. doi:10.1002/med.1021

    Article  PubMed  CAS  Google Scholar 

  • Xie SQ, Wang JH, Ma HX, Cheng PF, Zhao J, Wang CJ (2009) Polyamine transporter recognization and antitumor effects of anthracenymethyl homospermidine. Toxicology 263(2–3):127–133. doi:10.1016/j.tox.2009.07.001

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi N, Kiick KL (2005) Polysaccharide-poly(ethylene glycol) star copolymer as a scaffold for the production of bioactive hydrogels. Biomacromolecules 6(4):1921–1930. doi:10.1021/bm050003

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi N, Chae BS, Zhang L, Kiick KL, Furst EM (2005) Rheological characterization of polysaccharide-poly(ethylene glycol) star copolymer hydrogels. Biomacromolecules 6(4):1931–1940. doi:10.1021/bm0500042

    Article  PubMed  CAS  Google Scholar 

  • Yuan F, Qin X, Zhou D, Xiang QY, Wang MT, Zhang ZR, Huang Y (2008) In vitro cytotoxicity, in vivo biodistribution and antitumor activity of HPMA copolymer-5-fluorouracil conjugates. Eur J Pharm Biopharm 70(3):770–776. doi:10.1016/j.ejpb.2008.06.028

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Natural Science Foundation of China (Nos. 30901362, 81172893, 81000673) and the National Science and Technology Major Projects of New Drugs (2012ZX09103301-023).

Conflict of interest

The authors declare that there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yanfeng Gao or Yuanming Qi.

Additional information

Haili Wang and Xi Chen contributed equally to this work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, H., Chen, X., Chen, Y. et al. Antitumor activity of novel chimeric peptides derived from cyclinD/CDK4 and the protein transduction domain 4. Amino Acids 44, 499–510 (2013). https://doi.org/10.1007/s00726-012-1360-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-012-1360-5

Keywords

Navigation