Skip to main content

Advertisement

Log in

TAT-CC fusion protein depresses the oncogenicity of BCR-ABL in vitro and in vivo through interrupting its oligomerization

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Chronic myeloid leukemia (CML) is a clonal hematologic malignancy characterized by the BCR-ABL protein. BCR-ABL is a constitutively active tyrosine kinase and plays a critical role in the pathogenesis of CML. Imatinib mesylate, a selective tyrosine kinase inhibitor, is effective in CML, but drug resistance and relapse occur. The coiled-coil (CC) domain located in BCR1–72 mediates BCR-ABL tetramerization, which is essential for the activation of tyrosine kinase and transformation potential of BCR-ABL. CC domain is supposed to be a therapeutic target for CML. We purified a TAT-CC protein competively binding with the endogenous CC domain to reduce BCR-ABL kinase activity. We found that TAT-CC co-located and interacted with BCR-ABL in Ba/F3-p210 and K562 cells. It induced apoptosis and inhibited proliferation in these cells. It increased the sensitivity of these cells to imatinib and reduced the phosphorylation of BCR-ABL, CRKL and STAT5. We confirmed that TAT-CC could attenuate the oncogenicity of Ba/F3-p210 cells and diminish the volume of K562 solid tumor in mice. We conclude targeting the CC may provide a complementary therapy to inhibit BCR-ABL oncogenicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Baccarani M, Rosti G, Castagnetti F et al (2009) Comparison of imatinib 400 mg and 800 mg daily in the front-line treatment of high-risk, Philadelphia-positive chronic myeloid leukemia: a European LeukemiaNet Study. Blood 113:4497–4504

    Article  PubMed  CAS  Google Scholar 

  • Beissert T, Puccetti E, Bianchini A, Guller S, Boehrer S, Hoelzer D, Ottmann OG, Nervi C, Ruthardt M (2003) Targeting of the N-terminal coiled coil oligomerization interface of BCR interferes with the transformation potential of BCR-ABL and increases sensitivity to STI571. Blood 102:2985–2993

    Article  PubMed  CAS  Google Scholar 

  • Beissert T, Hundertmark A, Kaburova V, Travaglini L, Mian AA, Nervi C, Ruthardt M (2008) Targeting of the N-terminal coiled coil oligomerization interface by a helix-2 peptide inhibits unmutated and imatinib-resistant BCR/ABL. Int J Cancer 122:2744–2752

    Article  PubMed  CAS  Google Scholar 

  • de Lavallade H, Apperley JF, Khorashad JS, Milojkovic D, Reid AG, Bua M, Szydlo R, Olavarria E, Kaeda J, Goldman JM, Marin D (2008) Imatinib for Newly Diagnosed Patients With Chronic Myeloid Leukemia: incidence of Sustained Responses in an intention-to-treat analysis. J Clin Oncol 26:3358–3363

    Article  PubMed  Google Scholar 

  • Deininger MWN, Goldman JM, Melo JV (2000) The molecular biology of chronic myeloid leukemia. Blood 96:3343–3356

    PubMed  CAS  Google Scholar 

  • Deininger M, Buchdunger E, Druker BJ (2005) The development of imatinib as a therapeutic agent for chronic myeloid leukemia. Blood 105:2640–2653

    Article  PubMed  CAS  Google Scholar 

  • Druker BJ, Guilhot F, O’Brien SG et al (2006) Five-year follow-up of patients receiving imatinib for chronic myeloid leukemia. N Engl J Med 355:2408–2417

    Article  PubMed  CAS  Google Scholar 

  • Faderl S, Talpaz M, Estrov Z, O’Brien S, Kurzrock R, Kantarjian HM (1999) The biology of chronic myeloid leukemia. N Engl J Med 341:164–172

    Article  PubMed  CAS  Google Scholar 

  • Frankel AD, Pabo CO (1988) Cellular uptake of the tat protein from human immunodeficiency virus. Cell 55:1189–1193

    Article  PubMed  CAS  Google Scholar 

  • Gao Y, Xiong D, Yang M et al (2004) Efficient inhibition of multidrug-resistant human tumors with a recombinant bispecific anti-P-glycoprotein [times] anti-CD3 diabody. Leukemia 18:513–520

    Article  PubMed  CAS  Google Scholar 

  • Ghaffari S, Wu H, Gerlach M, Han Y, Lodish HF, Daley GQ (1999) BCR-ABL and v-SRC tyrosine kinase oncoproteins support normal erythroid development in erythropoietin receptor-deficient progenitor cells. Proc Natl Acad Sci USA 96:13186–13190

    Article  PubMed  CAS  Google Scholar 

  • Green M, Loewenstein PM (1988) Autonomous functional domains of chemically synthesized human immunodeficiency virus tat trans-activator protein. Cell 55:1179–1188

    Article  PubMed  CAS  Google Scholar 

  • Hazlehurst LA, Bewry NN, Nair RR, Pinilla-Ibarz J (2009) Signaling networks associated with BCR-ABL–Dependent transformation. Cancer Control 16:100–107

    PubMed  Google Scholar 

  • Herce HD, Garcia AE (2007) Molecular dynamics simulations suggest a mechanism for translocation of the HIV-1 TAT peptide across lipid membranes. Proc Natl Acad Sci 104:20805–20810

    Article  PubMed  CAS  Google Scholar 

  • Holtz MS, Bhatia R (2004) Effect of imatinib mesylate on chronic myelogenous leukemia hematopoietic progenitor cells. Leuk Lymphoma 45:237–245

    Article  PubMed  CAS  Google Scholar 

  • Huang Z, Ji M, Peng Z, Huang S, Xiao Q, Li C, Zeng J, Gao M, Feng W (2011) Purification of TAT-CC-HA protein under native condition, and its transduction analysis and biological effects on BCR-ABL positive cells. Biomed Pharmacother 65:183–192

    Article  PubMed  CAS  Google Scholar 

  • Ilaria RJ, Van Etten R (1995) The SH2 domain of P210BCR/ABL is not required for the transformation of hematopoietic factor-dependent cells. Blood 86:3897–3904

    PubMed  Google Scholar 

  • Jabbour E, Kantarjian HM, Jones D et al (2009) Imatinib mesylate dose escalation is associated with durable responses in patients with chronic myeloid leukemia after cytogenetic failure on standard-dose imatinib therapy. Blood 113:2154–2160

    Article  PubMed  CAS  Google Scholar 

  • Jacquel A, Herrant M, Defamie V et al (2005) A survey of the signaling pathways involved in megakaryocytic differentiation of the human K562 leukemia cell line by molecular and c-DNA array analysis. Oncogene 25:781–794

    Article  Google Scholar 

  • Kinyanjui MW, Fixman ED (2008) Cell-penetrating peptides and proteins: new inhibitors of allergic airways disease. This review is an invited paper from 2007 ICRH Leadership in Science: a forum for trainees and new investigators. Can J Physiol Pharmacol 86:1–7

    Article  PubMed  CAS  Google Scholar 

  • Klein E, Vánky F, Ben-Bassat H, Neumann H, Ralph P, Zeuthen J, Polliack A (1976) Properties of the K562 cell line, derived from a patient with chronic myeloid leukemia. Int J Cancer 18:421–431

    Article  PubMed  CAS  Google Scholar 

  • Lugo T, Pendergast A, Muller A, Witte O (1990) Tyrosine kinase activity and transformation potency of BCR-ABL oncogene products. Science 247:1079–1082

    Article  PubMed  CAS  Google Scholar 

  • Martin S, James DG (2003) Molecular mechanisms of transformation by the BCR-ABL oncogene. Semin Hematol 40:4–10

    Article  Google Scholar 

  • McWhirter JR, Galasso DL, Wang JY (1993) A coiled-coil oligomerization domain of BCR is essential for the transforming function of BCR-ABL oncoproteins. Mol Cell Biol 13:7587–7595

    PubMed  CAS  Google Scholar 

  • Melo JV, Deininger MW (2004) Biology of chronic myelogenous leukemia–signaling pathways of initiation and transformation. Hematol Oncol Clin North Am 18:545–568 (vii–viii)

    Article  PubMed  Google Scholar 

  • Mian AA, Oancea C, Zhao Z, Ottmann OG, Ruthardt M (2009) Oligomerization inhibition, combined with allosteric inhibition, abrogates the transformation potential of T315I-positive BCR/ABL. Leukemia 23:2242–2247

    Article  PubMed  CAS  Google Scholar 

  • Oda T, Heaney C, Hagopian JR, Okuda K, Griffin JD, Druker BJ (1994) Crkl is the major tyrosine-phosphorylated protein in neutrophils from patients with chronic myelogenous leukemia. J Biol Chem 269:22925–22928

    PubMed  CAS  Google Scholar 

  • Palandri F, Iacobucci I, Castagnetti F et al (2008) Front-line treatment of Philadelphia positive chronic myeloid leukemia with imatinib and interferon-{alpha}: 5-year outcome. Haematologica 93:770–774

    Article  PubMed  CAS  Google Scholar 

  • Rapoport M, Lorberboum-Galski H (2009) TAT-based drug delivery system—new directions in protein delivery for new hopes? Expert Opin Drug Deliv 6:453–463

    Article  PubMed  CAS  Google Scholar 

  • Richard JP, Melikov K, Vives E, Ramos C, Verbeure B, Gait MJ, Chernomordik LV, Lebleu B (2003) Cell-penetrating peptides. A reevaluation of the mechanism of cellular uptake. J Biol Chem 278:585–590

    Article  PubMed  CAS  Google Scholar 

  • Rolland SG, Conradt B (2010) New role of the BCL2 family of proteins in the regulation of mitochondrial dynamics. Curr Opin Cell Biol 22:852–858

    Article  PubMed  CAS  Google Scholar 

  • Sattler M, Salgia R (1998) Role of the adapter protein CRKL in signal transduction of normal hematopoietic and BCR/ABL-transformed cells. Leukemia 12:637–644

    Article  PubMed  CAS  Google Scholar 

  • Schroering AG, Kothandapani A, Patrick SM, Kaliyaperumal S, Sharma VP, Williams KJ (2009) Prolonged cell cycle response of HeLa cells to low-level alkylation exposure. Cancer Res 69:6307–6314

    Article  PubMed  CAS  Google Scholar 

  • Shuai K, Halpern J, ten Hoeve J, Rao X, Sawyers C (1996) Constitutive activation of STAT5 by the BCR-ABL oncogene in chronic myelogenous leukemia. Oncogene 13:247–254

    PubMed  CAS  Google Scholar 

  • Strecker A, Salzberger U, Mayer J (1993) Specimen preparation for transmission electron microscopy (TEM)–reliable method for cross sections and brittle materials. Prakt Metallogr 30:482–495

    CAS  Google Scholar 

  • Tzoracoleftherakis E, Sdralis E, Maroulis J, Ravazoula P (2010) Radiofrequency ablation in breast cancer. Cancer Res 69:2106

    Article  Google Scholar 

  • Vive`s E, Brodin P, Lebleu B (1997) A truncated HIV-1 Tat protein basic domain rapidly translocates through the plasma membrane and accumulates in the cell nucleus. J Biol Chem 272:16010–16017

    Article  CAS  Google Scholar 

  • Volpe G, Panuzzo C, Ulisciani S, Cilloni D (2009) Imatinib resistance in CML. Cancer Lett 274:1–9

    Article  PubMed  CAS  Google Scholar 

  • Zhang X, Subrahmanyam R, Wong R, Gross AW, Ren R (2001) The NH2-terminal coiled-coil domain and tyrosine 177 play important roles in induction of a myeloproliferative disease in mice by BCR-ABL. Mol Cell Biol 21:840–853

    Article  PubMed  CAS  Google Scholar 

  • Zhao X, Ghaffari S, Lodish H, Malashkevich VN, Kim PS (2002) Structure of the BCR-ABL oncoprotein oligomerization domain. Nat Struct Mol Biol 9:117–120

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China No. 30670901 to Wenli Feng.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen-Li Feng.

Additional information

Z.-L. Huang and M. Gao contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, ZL., Gao, M., Ji, MS. et al. TAT-CC fusion protein depresses the oncogenicity of BCR-ABL in vitro and in vivo through interrupting its oligomerization. Amino Acids 44, 461–472 (2013). https://doi.org/10.1007/s00726-012-1354-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-012-1354-3

Keywords

Navigation