Skip to main content
Log in

The involvement of AMPA–ERK1/2–BDNF pathway in the mechanism of new antidepressant action of prokinetic meranzin hydrate

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

It was recently discovered that ketamine can relieve depression in a matter of hours through an action on α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors. This is much more rapid than the several weeks required for the available antidepressants to show therapeutic efficacy. However, ketamine has negative side effects. The aim of this study was to determine whether the natural prokinetic drug meranzin hydrate (MH) has a fast-acting antidepressant effect mediated by AMPA receptors. By means of in vivo and in vitro experiments, we found that (1) treatment of rats with MH at 9 mg/kg decreased immobility time in a forced swimming test (FST), as did the popular antidepressant fluoxetine and the AMPA receptor positive modulator aniracetam. Pretreatment of rats with NBQX (10 mg/kg), an antagonist of AMPA receptors, blocked this effect of MH. (2) MH increased number of crossings of forced swimming rats in the open field test. (3) FST enhanced hippocampal ERK1/2, p-ERK1/2 and BDNF expression levels. MH (9 mg/kg) treatment further up-regulated hippocampal p-ERK1/2 and BDNF expression levels, and this effect was prevented by NBQX. (4) MH-increased BDNF expression corresponded with MH-decreased immobility time in the FST. (5) In vitro experiments, we found that incubation of rats hippocampus slices with MH (10, 20 μM respectively) increased concentrations of BDNF and p-ERK1/2. This effect of MH (20 μM) were prevented by NBQX. In conclusion, in animals subjected to acute stress, the natural prokinetic drug MH produced a rapid effect mediated by AMPA receptors and involving BDNF modulation through the ERK1/2 pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • aan het Rot M, Collins KA, Murrough JW, Perez AM, Reich DL, Dennis S et al (2010) Safety and efficacy of repeated-dose intravenous ketamine for treatment-resistant depression. Soc Biol Psychiatr 67:139–145

  • Alexander N, Osinsky R, Schmitz A, Mueller E, Kuepper Y, Hennig J (2010) The BDNF Val66Met polymorphism affects HPA-axis reactivity to acute stress. Psychoneuroendocrinology 35:949–953

    Article  PubMed  CAS  Google Scholar 

  • Bai F, Li X, Clay M, Lindstrom T, Skolnick P (2001) Intra- and interstrain differences in models of “behavioral despair”. Pharmacol Biochem Behav 70:187–192

    Article  PubMed  CAS  Google Scholar 

  • Bhagwagar Z, Wylezinska M, Jezzard P, Evans J, Ashworth F, Sule A (2007) Reduction in occipital cortex γ-aminobutric acid concentrations in medication-free recovered unipolar depressed and bipolar subjects. Biol Psychiatry 61:806–812

    Article  PubMed  CAS  Google Scholar 

  • Brown AS (2011) The environment and susceptibility to schizophrenia. Prog Neurobiol 93:23–58

    Article  PubMed  CAS  Google Scholar 

  • Calabtese F, Molteni R, Racagni G, Riva MA (2009) Neuronal plasticity: a link between stress and mood disorders. Psychoneuroendocrinology 34:S208–S216

    Article  Google Scholar 

  • Choudary P, Molnar M, Evans SJ et al (2005) Altered cortical glutamatergic and GABAergic signal transmission with glial involvement in depression. Proc Natl Acad Sci USA 102:15653–15658

    Article  PubMed  CAS  Google Scholar 

  • Cozza KL, Armstrong SC, Oesterheld JR (2003) Drug Interaction principles for Medical Practice, vol 37. American Psychiatric Publishing Inc., Washington, DC, 179–185

  • Dell’Anno MT, Pallottino S, Fisone G (2012) mGlu5R promotes glutamate AMPA receptor phosphorylation via activation of PKA/DARPP-32 signaling in striatopallidal medium spiny neurons. Neuropharmacology 1–8. doi:10.1016/j.neuropharm.2012.03.025

  • Derkach VA, Oh MC, Guire ES, Soderling TR (2007) Regulatory mechanisms of AMPA receptors in synaptic plasticity. Nat Rev Neurosci 8:101–113

    Article  PubMed  CAS  Google Scholar 

  • Fumagalli F, Calabresea F, Luonia A, Shahidc M, Racagni G, Marco A et al (2012) The AMPA receptor potentiator Org 26576 modulates stress-induced. Pharmacol Res 65:176–181

    Google Scholar 

  • Fumagalli F, Pasini M, Frasca A, Drago F et al (2009) Prenatal stress alters glutamatergic system responsiveness in adult rat prefrontal cortex. J Neurochem 109:1733–1744

    Article  PubMed  CAS  Google Scholar 

  • Fumgalli F, Calabrese F, Luoni A, Bolis F, Racagni G and Riva MA (2011) Modulation of BDNF expression by repeated treatment with the novel antipsychotic lurasidone under basal condition and in response to acute stress. Neuroscience 24:1–12

    Google Scholar 

  • Hayashi T, Umemori H, Mishina M and Yamamoto T (1999) The AMPA receptor interacts with and signals through the protein tyrosine kinase Lyn. Nature 397:72–76

    Google Scholar 

  • Homberg JR, Schubert D, Gaspar P (2010) New perspectives on the neurodevelopmental effects of SSRIs. Trends Pharmacol Sci 31:60–65

    Article  PubMed  CAS  Google Scholar 

  • Huang W, Huang X, Xing Z, Qiu X, Wang Y, Fan R et al (2011) Meranzin hydrate induces similar effect to Fructus Aurantii on intestinal motility through activation of H1 histamine receptors. J Gastrointest Surg 15:87–96

    Article  PubMed  Google Scholar 

  • Wager-Smith K, Markou A (2011) Depression: a repair response to stress-induced neuronal microdamage that can grade into a chronic neuroinflammatory condition? Neurosci Biobehav Rev 35:742–764

    Google Scholar 

  • Kawashima H, Numakawa T, Kumamaru E, Adachi N, Mizuno H, Ninomiya M et al (2010) Glucocorticoid attenuates brain-derived neurotrophic factor-dependent upregulation of glutamate receptors via the suppression of microRNA-132 expression. Neuroscience 165:1301–1311

    Article  PubMed  CAS  Google Scholar 

  • Kim S-H, Han J, Seog D-H, Chung J-Y, Kim Nari, Park YeongHong et al (2005) Antidepressant effect of Chaihu-Shugan-San extract and its constituents in rat models of depression. Life Sci 76:1279–1306

    Article  Google Scholar 

  • Legutko B, Li X, Skolnick P (2001) Regulation of BDNF expression in primary neuron culture by LY392098, a novel AMPA receptor potentiator. Neuropharmacology 40:1019–1027

    Google Scholar 

  • Li X, Tizzano JP, Griffey K, Clay M, Lindstrom T, Skolnick P (2001) Antidepressant-like actions of an AMPA receptor potentiator (LY392098). Neuropharmacology 40:1028–1033

    Article  PubMed  CAS  Google Scholar 

  • Li YH, Zhang CH, Wang SE, Qiu J, Hu SY, Xiao GL (2009) Effects of Chaihu Shugan San on behavior and plasma levels of corticotropin releasing hormone and adrenocorticotropic hormone of rats with chronic mild unpredicted stress depression. Zhong Xi Yi Jie He Xue Bao 11:1073–1077

    Article  Google Scholar 

  • Maeng S, Zarate CA Jr, Du J, Schloesser RJ et al (2008) Cellular mechanismsu underlying the antidepressant effects of ketamine: role of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptors. Biol Psychiatry 63:349–352

    Google Scholar 

  • Martinowich K, Manji H, Lu B (2007) New insights into BDNF function in depression and anxiety. Nat Neurosci 10:1089–1093

    Article  PubMed  CAS  Google Scholar 

  • Mayer EA, Tillisch K, Bradesi S (2006) Modulation of the brain-gut axis as a therapeutic approach in gastrointestinal disease. Aliment Pharmacol Ther 24:919–933

    Article  PubMed  CAS  Google Scholar 

  • Meyer JH, Kapur S, Eisfeld B, Brown GM, Houle S, DaSilva J, Wilson AA, Rafi-Tari S, Mayberg HS, Kennedy SH (2001) The effect of paroxetine on 5-HT(2A) receptors in depression: an [(18)F]setoperone PET imaging study. Am J Psychiatry 158:78–85

    Article  PubMed  CAS  Google Scholar 

  • Mitsukawa K, Mombereau C, Lötscher E, Uzunov DP, van der Putten H, Flor PJ, Cryan JF (2006) Metabotropic glutamate receptor subtype 7 ablation causes dysregulation of the HPA axis and increases hippocampal BDNF protein levels: implications for stress-related psychiatric disorders. Neuropsychopharmacology 31:1112–1122

    PubMed  CAS  Google Scholar 

  • Okuyama S, Aihara H (1988) Action of nootropic drugs on transcollosal responses of rats. Neuropharmacology 27:67–72

    Article  PubMed  CAS  Google Scholar 

  • Oliveira IJL, Molz S, Souza DO, Tasca CI (2002) Neuroprotective effect of GMP in hippocampal slices submitted to an in vitro model of ischemia. Cell Mol Neurobiol 22:335–344

    Article  PubMed  CAS  Google Scholar 

  • Phillips KA, Veenstra DL, Oren E, Lee JK, Sadee W (2011) Potential role of pharmacogenomics in reducing adverse drug reactions: a systematic review. JAMA 286:2270–2279

    Article  Google Scholar 

  • Pitt D, Werner P, Raine CS (2000) Glutamate excitotoxicity in a model of multiple sclerosis. Nat Med 6:67–70

    Article  PubMed  CAS  Google Scholar 

  • Porsolt RD, Le Pichon M, Jalfre M (1977) Depression: a new animal model sensitive to antidepressant treatments. Nature 266:730–732

    Article  PubMed  CAS  Google Scholar 

  • Porsolt RD, Anton G, Deniel M, Jalfre M (1978) Behavioral despair in rats: a new model sensitive to antidepressant treatments. Eur J Pharmacol 47:379–391

    Article  PubMed  CAS  Google Scholar 

  • Qi Xiaoli, Lin Wenjuan, Li Junfa, Li Huanhuan, Wang Weiwen, Wang Donglin et al (2008) Fluoxetine increases the activity of ERK-CREB signal system and alleviates the depressive-like behavior in rats exposed to chronic forced swim stress. Neurobiol Dis 31:278–285

    Article  PubMed  CAS  Google Scholar 

  • Qiu XJ, Huang X, Chen ZQ, Ren P, Huang W, Qin F et al (2011) Pharmacokinetic study of the prokinetic compounds meranzin hydrate and ferulic acid following oral administration of Chaihu-Shugan-San to patients with functional dyspepsia. J Ethnopharmacol 137:205–213

    Article  PubMed  CAS  Google Scholar 

  • Quan M-N, Zhang N, Wang Y-Y, Zhang T, Yang Z (2011) Possible antidepressant effects and mechanism of memantine in behaviors and synaptic plasticity of depression rat model. Neuroscience 11:284–287

    Google Scholar 

  • Ramos A, Mormede P (1997) Stress and emotionality: a multidimensional and genetic approach. Neurosci Biobehav Rev 22:33–57

    Article  Google Scholar 

  • Rex CS, Lauterborn JC, Lin CY, Kramar EA, Rogers GA et al (2006) Restoration of long-term potentiation in middle-aged hippocampus after induction of brain-derived neurotrophic factor. J Neurophysiol 96:677–685

    Article  PubMed  CAS  Google Scholar 

  • Sen S, Sanacora G (2008) Major depression: emerging therapeutics. Mount Sinai J Med 75:205–225

    Google Scholar 

  • Szewczyk B, Poleszak E, Sowa-Kuc ′ma M, Wro ′bel A, Słotwin ′ ski S, Listos JP et al (2010) The involvement of NMDA and AMPA receptors in the mechanism of antidepressant-like action of zinc in the forced swim test. Gabriel Nowak 39:205–217

  • Vaishnav K and Nestler EJ (2008) The molecular neurobiology of depression. Nature 10:455–471

    Google Scholar 

  • Xuan Wu, Zhu Daming, Jiang Xueying, Okagaki Peter, Mearow Karen, Zhu Guanshan et al (2004) AMPA protects cultured neurons against glutamate excitotoxicity through a phosphatidylinositol 3-kinase-dependent activation in extracellular signal-regulated kinase to upregulate BDNF gene expression. J Neurochem 90:807–818

    Article  Google Scholar 

  • Xueming Gao (2007) Chinese medicine. Chinese Traditional Chinese Medicine Press, Beijing, pp 118–123

  • Zarate CA Jr, Singh JB, Carlson PJ, Brutsche NE, Ameli R, Luckenbaugh DA, et al (2006) A randomized trial of an N-methyl-d-aspartate antagonist in treatment-resistant major depression. Arch Gen Psychiatry 63:856–864

    Google Scholar 

  • Zhang Y-j, Huang X, Wang Y, Xie Y, Qiu Xin-jiang, Ren P et al (2011) Ferulic acid-induced anti-depression and prokinetics similar to Chaihu-Shugan-San via polypharmacology. Brain Res Bull 86:222–228

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant (No. 81072967; No.30572339; No.81173591) from Natural Foundation of our country, and partly supported by the fund from National Key Clinical Specialist vocational school of TCM encephalopathy and the Huge Project to Boost Chinese Drug Development (2011ZX09101-009-03). This work was also supported by the National Natural Science Foundation of our country (30801506).

Conflict of interest

The authors declare no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xi Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xie, Y., Huang, X., Hu, Sy. et al. The involvement of AMPA–ERK1/2–BDNF pathway in the mechanism of new antidepressant action of prokinetic meranzin hydrate. Amino Acids 44, 413–422 (2013). https://doi.org/10.1007/s00726-012-1347-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-012-1347-2

Keywords

Navigation