Skip to main content

Advertisement

Log in

Creatine as a therapeutic strategy for myopathies

  • Review Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Myopathies are genetic or acquired disorders of skeletal muscle that lead to varying degrees of weakness, atrophy, and exercise intolerance. In theory, creatine supplementation could have a number of beneficial effects that could enhance function in myopathy patients, including muscle mass, strength and endurance enhancement, lower calcium levels, anti-oxidant effects, and reduced apoptosis. Patients with muscular dystrophy respond to several months of creatine monohydrate supplementation (~0.075–0.1 g/kg/day) with greater strength (~9%) and fat-free mass (~0.63 kg). Patients with myotonic dystrophy do not show as consistent an effect, possibly due to creatine transport issues. Creatine monohydrate supplementation shows modest benefits only at lower doses and possibly negative effects (cramping) at higher doses in McArdle’s disease patients. Patients with MELAS syndrome show some evidence of benefit from creatine supplementation in exercise capacity, with the effects in patients with CPEO being less robust, again, possibly due to limited muscle creatine uptake. The evidence for side effects or negative impact upon serological metrics from creatine supplementation in all groups of myopathy patients is almost non-existent and pale in comparison to the very substantial and well-known side effects from our current chemotherapeutic interventions for some myopathies (i.e., corticosteroids).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Alexanderson H (2005) Exercise: an important component of treatment in the idiopathic inflammatory myopathies. Curr Rheumatol Rep 7:115–124

    Article  PubMed  Google Scholar 

  • Alexanderson H, Dastmalchi M, Esbjornsson-Liljedahl M, Opava CH, Lundberg IE (2007) Benefits of intensive resistance training in patients with chronic polymyositis or dermatomyositis. Arthritis Rheum 57:768–777

    Article  PubMed  Google Scholar 

  • Antolic A, Roy BD, Tarnopolsky MA, Zernicke RF, Wohl GR, Shaughnessy SG, Bourgeois JM (2007) Creatine monohydrate increases bone mineral density in young Sprague-Dawley rats. Med Sci Sports Exerc 39:816–820

    Article  PubMed  CAS  Google Scholar 

  • Argov Z, Bank WJ (1991) Phosphorus magnetic resonance spectroscopy (31P MRS) in neuromuscular disorders. Ann Neurol 30:90–97

    Article  PubMed  CAS  Google Scholar 

  • Arnardottir S, Alexanderson H, Lundberg IE, Borg K (2003) Sporadic inclusion body myositis: pilot study on the effects of a home exercise program on muscle function, histopathology and inflammatory reaction. J Rehabil Med 35:31–35

    Article  PubMed  Google Scholar 

  • Baker SK, Tarnopolsky MA (2003) Targeting cellular energy production in neurological disorders. Expert Opin Investig Drugs 12:1655–1679

    Article  PubMed  CAS  Google Scholar 

  • Banerjee B, Sharma U, Balasubramanian K, Kalaivani M, Kalra V, Jagannathan NR (2010) Effect of creatine monohydrate in improving cellular energetics and muscle strength in ambulatory Duchenne muscular dystrophy patients: a randomized, placebo-controlled 31P MRS study. Magn Reson Imaging 28:698–707

    Google Scholar 

  • Barisic N, Bernert G, Ipsiroglu O, Stromberger C, Muller T, Gruber S, Prayer D, Moser E, Bittner RE, Stockler-Ipsiroglu S (2002) Effects of oral creatine supplementation in a patient with MELAS phenotype and associated nephropathy. Neuropediatrics 33:157–161

    Article  PubMed  CAS  Google Scholar 

  • Biggar WD, Gingras M, Fehlings DL, Harris VA, Steele CA (2001) Deflazacort treatment of Duchenne muscular dystrophy. J Pediatr 138:45–50

    Article  PubMed  CAS  Google Scholar 

  • Borchert A, Wilichowski E, Hanefeld F (1999) Supplementation with creatine monohydrate in children with mitochondrial encephalomyopathies. Muscle Nerve 22:1299–1300

    Article  PubMed  CAS  Google Scholar 

  • Brose A, Parise G, Tarnopolsky MA (2003) Creatine supplementation enhances isometric strength and body composition improvements following strength exercise training in older adults. J Gerontol A Biol Sci Med Sci 58:11–19

    PubMed  Google Scholar 

  • Burke DG, Chilibeck PD, Parise G, Tarnopolsky MA, Candow DG (2003) Effect of alpha-lipoic acid combined with creatine monohydrate on human skeletal muscle creatine and phosphagen concentration. Int J Sport Nutr Exerc Metab 13:294–302

    PubMed  CAS  Google Scholar 

  • Campos AR, Serafini LN, Sobreira C, Menezes LG, Martinez JA (2006) Creatine intake attenuates corticosteroid-induced impairment of voluntary running in hamsters. Appl Physiol Nutr Metab 31:490–494

    Article  PubMed  CAS  Google Scholar 

  • Casey A, Constantin-Teodosiu D, Howell S, Hultman E, Greenhaff PL (1996) Creatine ingestion favorably affects performance and muscle metabolism during maximal exercise in humans. Am J Physiol 271:E31–E37

    PubMed  CAS  Google Scholar 

  • Chrusch MJ, Chilibeck PD, Chad KE, Davison KS, Burke DG (2001) Creatine supplementation combined with resistance training in older men. Med Sci Sports Exerc 33:2111–2117

    Article  PubMed  CAS  Google Scholar 

  • Chung YL, Alexanderson H, Pipitone N, Morrison C, Dastmalchi M, Stahl-Hallengren C, Richards S, Thomas EL, Hamilton G, Bell JD, Lundberg IE, Scott DL (2007) Creatine supplements in patients with idiopathic inflammatory myopathies who are clinically weak after conventional pharmacologic treatment: six-month, double-blind, randomized, placebo-controlled trial. Arthritis Rheum 57:694–702

    Article  PubMed  CAS  Google Scholar 

  • Dangott B, Schultz E, Mozdziak PE (2000) Dietary creatine monohydrate supplementation increases satellite cell mitotic activity during compensatory hypertrophy. Int J Sports Med 21:13–16

    Article  PubMed  CAS  Google Scholar 

  • Escolar DM, Buyse G, Henricson E, Leshner R, Florence J, Mayhew J, Tesi-Rocha C, Gorni K, Pasquali L, Patel KM, McCarter R, Huang J, Mayhew T, Bertorini T, Carlo J, Connolly AM, Clemens PR, Goemans N, Iannaccone ST, Igarashi M, Nevo Y, Pestronk A, Subramony SH, Vedanarayanan VV, Wessel H (2005) CINRG randomized controlled trial of creatine and glutamine in Duchenne muscular dystrophy. Ann Neurol 58:151–155

    Article  PubMed  CAS  Google Scholar 

  • Fenichel GM, Florence JM, Pestronk A, Mendell JR, Moxley RT 3rd, Griggs RC, Brooke MH, Miller JP, Robison J, King W et al (1991) Long-term benefit from prednisone therapy in Duchenne muscular dystrophy. Neurology 41:1874–1877

    PubMed  CAS  Google Scholar 

  • Granchelli JA, Pollina C, Hudecki MS (2000) Pre-clinical screening of drugs using the mdx mouse. Neuromuscul Disord 10:235–239

    Article  PubMed  CAS  Google Scholar 

  • Hawker GA, Ridout R, Harris VA, Chase CC, Fielding LJ, Biggar WD (2005) Alendronate in the treatment of low bone mass in steroid-treated boys with Duchennes muscular dystrophy. Arch Phys Med Rehabil 86:284–288

    Article  PubMed  Google Scholar 

  • Hespel P, Op’t Eijnde B, Van Leemputte M (2002) Opposite actions of caffeine and creatine on muscle relaxation time in humans. J Appl Physiol 92:513–518

    PubMed  CAS  Google Scholar 

  • Kley RA, Tarnopolsky MA, Vorgerd M (2011) Creatine for treating muscle disorders. Cochrane Database Syst Rev:CD004760

  • Klopstock T, Querner V, Schmidt F, Gekeler F, Walter M, Hartard M, Henning M, Gasser T, Pongratz D, Straube A, Dieterich M, Muller-Felber W (2000) A placebo-controlled crossover trial of creatine in mitochondrial diseases. Neurology 55:1748–1751

    PubMed  CAS  Google Scholar 

  • Komura K, Hobbiebrunken E, Wilichowski EK, Hanefeld FA (2003) Effectiveness of creatine monohydrate in mitochondrial encephalomyopathies. Pediatr Neurol 28:53–58

    Article  PubMed  Google Scholar 

  • Korenke GC, Wanders RJ, Hanefeld F (2003) Striking improvement of muscle strength under creatine therapy in a patient with long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency. J Inherit Metab Dis 26:67–68

    Article  PubMed  CAS  Google Scholar 

  • Kornblum C, Schroder R, Muller K, Vorgerd M, Eggers J, Bogdanow M, Papassotiropoulos A, Fabian K, Klockgether T, Zange J (2005) Creatine has no beneficial effect on skeletal muscle energy metabolism in patients with single mitochondrial DNA deletions: a placebo-controlled, double-blind 31P-MRS crossover study. Eur J Neurol 12:300–309

    Article  PubMed  CAS  Google Scholar 

  • Lawler JM, Barnes WS, Wu G, Song W, Demaree S (2002) Direct antioxidant properties of creatine. Biochem Biophys Res Commun 290:47–52

    Article  PubMed  CAS  Google Scholar 

  • Louis M, Lebacq J, Poortmans JR, Belpaire-Dethiou MC, Devogelaer JP, Van Hecke P, Goubel F, Francaux M (2003) Beneficial effects of creatine supplementation in dystrophic patients. Muscle Nerve 27:604–610

    Article  PubMed  CAS  Google Scholar 

  • Louis M, Raymackers JM, Debaix H, Lebacq J, Francaux M (2004) Effect of creatine supplementation on skeletal muscle of mdx mice. Muscle Nerve 29:687–692

    Article  PubMed  CAS  Google Scholar 

  • Mankodi A, Teng-Umnuay P, Krym M, Henderson D, Swanson M, Thornton CA (2003) Ribonuclear inclusions in skeletal muscle in myotonic dystrophy types 1 and 2. Ann Neurol 54:760–768

    Article  PubMed  CAS  Google Scholar 

  • McClure WC, Rabon RE, Ogawa H, Tseng BS (2007) Upregulation of the creatine synthetic pathway in skeletal muscles of mature mdx mice. Neuromuscul Disord 17:639–650

    Article  PubMed  Google Scholar 

  • Menezes LG, Sobreira C, Neder L, Rodrigues-Junior AL, Martinez JA (2007) Creatine supplementation attenuates corticosteroid-induced muscle wasting and impairment of exercise performance in rats. J Appl Physiol 102:698–703

    Article  PubMed  CAS  Google Scholar 

  • Mihic S, MacDonald JR, McKenzie S, Tarnopolsky MA (2000) Acute creatine loading increases fat-free mass, but does not affect blood pressure, plasma creatinine, or CK activity in men and women. Med Sci Sports Exerc 32:291–296

    Article  PubMed  CAS  Google Scholar 

  • Milhorat A, Wolff HG (1938) Creatine and creatinine metabolism and diseases of the neuro-muscular system. Arch Neurol Psychiatry 40:663–679

    CAS  Google Scholar 

  • Murphy JL, Blakely EL, Schaefer AM, He L, Wyrick P, Haller RG, Taylor RW, Turnbull DM, Taivassalo T (2008) Resistance training in patients with single, large-scale deletions of mitochondrial DNA. Brain 131:2832–2840

    Article  PubMed  Google Scholar 

  • Olsen S, Aagaard P, Kadi F, Tufekovic G, Verney J, Olesen JL, Suetta C, Kjaer M (2006) Creatine supplementation augments the increase in satellite cell and myonuclei number in human skeletal muscle induced by strength training. J Physiol 573:525–534

    Article  PubMed  CAS  Google Scholar 

  • Park JH, Vital TL, Ryder NM, Hernanz-Schulman M, Partain CL, Price RR, Olsen NJ (1994) Magnetic resonance imaging and P-31 magnetic resonance spectroscopy provide unique quantitative data useful in the longitudinal management of patients with dermatomyositis. Arthritis Rheum 37:736–746

    Article  PubMed  CAS  Google Scholar 

  • Passaquin AC, Renard M, Kay L, Challet C, Mokhtarian A, Wallimann T, Ruegg UT (2002) Creatine supplementation reduces skeletal muscle degeneration and enhances mitochondrial function in mdx mice. Neuromuscul Disord 12:174–182

    Article  PubMed  Google Scholar 

  • Payne ET, Yasuda N, Bourgeois JM, Devries MC, Rodriguez MC, Yousuf J, Tarnopolsky MA (2006) Nutritional therapy improves function and complements corticosteroid intervention in mdx mice. Muscle Nerve 33:66–77

    Article  PubMed  CAS  Google Scholar 

  • Pearlman JP, Fielding RA (2006) Creatine monohydrate as a therapeutic aid in muscular dystrophy. Nutr Rev 64:80–88

    Article  PubMed  Google Scholar 

  • Pittas G, Hazell MD, Simpson EJ, Greenhaff PL (2010) Optimization of insulin-mediated creatine retention during creatine feeding in humans. J Sports Sci 28:67–74

    Google Scholar 

  • Pulido SM, Passaquin AC, Leijendekker WJ, Challet C, Wallimann T, Ruegg UT (1998) Creatine supplementation improves intracellular Ca2+ handling and survival in mdx skeletal muscle cells. FEBS Lett 439:357–362

    Article  PubMed  CAS  Google Scholar 

  • Robertshaw HA, Raha S, Kaczor JJ, Tarnopolsky MA (2008) Increased PFK activity and GLUT4 protein content in McArdle’s disease. Muscle Nerve 37:431–437

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez MC, MacDonald JR, Mahoney DJ, Parise G, Beal MF, Tarnopolsky MA (2007) Beneficial effects of creatine, CoQ10, and lipoic acid in mitochondrial disorders. Muscle Nerve 35:235–242

    Article  PubMed  CAS  Google Scholar 

  • Roy BD, Bourgeois JM, Mahoney DJ, Tarnopolsky MA (2002) Dietary supplementation with creatine monohydrate prevents corticosteroid-induced attenuation of growth in young rats. Can J Physiol Pharmacol 80:1008–1014

    Article  PubMed  CAS  Google Scholar 

  • Schara U, Mortier Mortier W (2001) Long-term steroid therapy in Duchenne muscular dystrophy-positive results versus side effects. J Clin Neuromuscul Dis 2:179–183

    Article  PubMed  CAS  Google Scholar 

  • Schneider-Gold C, Beck M, Wessig C, George A, Kele H, Reiners K, Toyka KV (2003) Creatine monohydrate in DM2/PROMM: a double-blind placebo-controlled clinical study. Proximal myotonic myopathy. Neurology 60:500–502

    PubMed  CAS  Google Scholar 

  • Sipila I, Rapola J, Simell O, Vannas A (1981) Supplementary creatine as a treatment for gyrate atrophy of the choroid and retina. N Engl J Med 304:867–870

    Article  PubMed  CAS  Google Scholar 

  • Storey KB, Hochachka PW (1974) Activation of muscle glycolysis: a role for creatine phosphate in phosphofructokinase regulation. FEBS Lett 46:337–339

    Article  PubMed  CAS  Google Scholar 

  • Taivassalo T, Gardner JL, Taylor RW, Schaefer AM, Newman J, Barron MJ, Haller RG, Turnbull DM (2006) Endurance training and detraining in mitochondrial myopathies due to single large-scale mtDNA deletions. Brain 129:3391–3401

    Article  PubMed  Google Scholar 

  • Tarnopolsky MA (2008) The mitochondrial cocktail: rationale for combined nutraceutical therapy in mitochondrial cytopathies. Adv Drug Deliv Rev 60:1561–1567

    Article  PubMed  CAS  Google Scholar 

  • Tarnopolsky MA, Beal MF (2001) Potential for creatine and other therapies targeting cellular energy dysfunction in neurological disorders. Ann Neurol 49:561–574

    Article  PubMed  CAS  Google Scholar 

  • Tarnopolsky MA, MacLennan DP (2000) Creatine monohydrate supplementation enhances high-intensity exercise performance in males and females. Int J Sport Nutr Exerc Metab 10:452–463

    PubMed  CAS  Google Scholar 

  • Tarnopolsky M, Martin J (1999) Creatine monohydrate increases strength in patients with neuromuscular disease. Neurology 52:854–857

    PubMed  CAS  Google Scholar 

  • Tarnopolsky MA, Parise G (1999) Direct measurement of high-energy phosphate compounds in patients with neuromuscular disease. Muscle Nerve 22:1228–1233

    Article  PubMed  CAS  Google Scholar 

  • Tarnopolsky MA, Raha S (2005) Mitochondrial myopathies: diagnosis, exercise intolerance, and treatment options. Med Sci Sports Exerc 37:2086–2093

    Article  PubMed  CAS  Google Scholar 

  • Tarnopolsky MA, Roy BD, MacDonald JR (1997) A randomized, controlled trial of creatine monohydrate in patients with mitochondrial cytopathies. Muscle Nerve 20:1502–1509

    Article  PubMed  CAS  Google Scholar 

  • Tarnopolsky MA, Parshad A, Walzel B, Schlattner U, Wallimann T (2001) Creatine transporter and mitochondrial creatine kinase protein content in myopathies. Muscle Nerve 24:682–688

    Article  PubMed  CAS  Google Scholar 

  • Tarnopolsky M, Mahoney D, Thompson T, Naylor H, Doherty TJ (2004a) Creatine monohydrate supplementation does not increase muscle strength, lean body mass, or muscle phosphocreatine in patients with myotonic dystrophy type 1. Muscle Nerve 29:51–58

    Article  PubMed  CAS  Google Scholar 

  • Tarnopolsky MA, Mahoney DJ, Vajsar J, Rodriguez C, Doherty TJ, Roy BD, Biggar D (2004b) Creatine monohydrate enhances strength and body composition in Duchenne muscular dystrophy. Neurology 62:1771–1777

    PubMed  CAS  Google Scholar 

  • Tarnopolsky MA, Simon DK, Roy BD, Chorneyko K, Lowther SA, Johns DR, Sandhu JK, Li Y, Sikorska M (2004c) Attenuation of free radical production and paracrystalline inclusions by creatine supplementation in a patient with a novel cytochrome b mutation. Muscle Nerve 29:537–547

    Article  PubMed  Google Scholar 

  • Tarnopolsky M, Zimmer A, Paikin J, Safdar A, Aboud A, Pearce E, Roy B, Doherty T (2007) Creatine monohydrate and conjugated linoleic acid improve strength and body composition following resistance exercise in older adults. PLoS One 2:e991

    Article  PubMed  Google Scholar 

  • van Adel BA, Tarnopolsky MA (2009) Metabolic myopathies: update 2009. J Clin Neuromuscul Dis 10:97–121

    Article  PubMed  Google Scholar 

  • Vandenberghe K, Goris M, Van Hecke P, Van Leemputte M, Vangerven L, Hespel P (1997) Long-term creatine intake is beneficial to muscle performance during resistance training. J Appl Physiol 83:2055–2063

    PubMed  CAS  Google Scholar 

  • Vorgerd M, Grehl T, Jager M, Muller K, Freitag G, Patzold T, Bruns N, Fabian K, Tegenthoff M, Mortier W, Luttmann A, Zange J, Malin JP (2000) Creatine therapy in myophosphorylase deficiency (McArdle disease): a placebo-controlled crossover trial. Arch Neurol 57:956–963

    Article  PubMed  CAS  Google Scholar 

  • Vorgerd M, Zange J, Kley R, Grehl T, Husing A, Jager M, Muller K, Schroder R, Mortier W, Fabian K, Malin JP, Luttmann A (2002) Effect of high-dose creatine therapy on symptoms of exercise intolerance in McArdle disease: double-blind, placebo-controlled crossover study. Arch Neurol 59:97–101

    Article  PubMed  Google Scholar 

  • Walter MC, Lochmuller H, Reilich P, Klopstock T, Huber R, Hartard M, Hennig M, Pongratz D, Muller-Felber W (2000) Creatine monohydrate in muscular dystrophies: a double-blind, placebo-controlled clinical study. Neurology 54:1848–1850

    PubMed  CAS  Google Scholar 

  • Walter MC, Reilich P, Lochmuller H, Kohnen R, Schlotter B, Hautmann H, Dunkl E, Pongratz D, Muller-Felber W (2002) Creatine monohydrate in myotonic dystrophy: a double-blind, placebo-controlled clinical study. J Neurol 249:1717–1722

    Article  PubMed  CAS  Google Scholar 

  • Yang L, Calingasan NY, Wille EJ, Cormier K, Smith K, Ferrante RJ, Beal MF (2009) Combination therapy with coenzyme Q10 and creatine produces additive neuroprotective effects in models of Parkinson’s and Huntington’s diseases. J Neurochem 109:1427–1439

    Article  PubMed  CAS  Google Scholar 

  • Zhu S, Li M, Figueroa BE, Liu A, Stavrovskaya IG, Pasinelli P, Beal MF, Brown RH Jr, Kristal BS, Ferrante RJ, Friedlander RM (2004) Prophylactic creatine administration mediates neuroprotection in cerebral ischemia in mice. J Neurosci 24:5909–5912

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Tarnopolsky.

Additional information

Dr. Tarnopolsky is the Co-founder and chief scientific officer for Life Sciences Nutritionals (we do not make any products containing creatine).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tarnopolsky, M.A. Creatine as a therapeutic strategy for myopathies. Amino Acids 40, 1397–1407 (2011). https://doi.org/10.1007/s00726-011-0876-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-011-0876-4

Keywords

Navigation