Skip to main content
Log in

The postprandial use of dietary amino acids as an energy substrate is delayed after the deamination process in rats adapted for 2 weeks to a high protein diet

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

The aim of this study was to determine the contribution of dietary amino acids (AA) to energy metabolism under high protein (HP) diets, using a double tracer method to follow simultaneously the metabolic fate of α-amino groups and carbon skeletons. Sixty-seven male Wistar rats were fed a normal (NP) or HP diet for 14 days. Fifteen of them were equipped with a permanent catheter. On day 15, after fasting overnight, they received a 4-g meal extrinsically labeled with a mixture of 20 U-[15N]-[13C] AA. Energy metabolism, dietary AA deamination and oxidation and their transfer to plasma glucose were measured kinetically for 4 h in the catheterized rats. The transfer of dietary AA to liver glycogen was determined at 4 h. The digestive kinetics of dietary AA, their transfer into liver AA and proteins and the liver glycogen content were measured in the 52 other rats that were killed sequentially hourly over a 4-h period. [15N] and [13C] kinetics in the splanchnic protein pools were perfectly similar. Deamination increased fivefold in HP rats compared to NP rats. In the latter, all deaminated AA were oxidized. In HP rats, the oxidation rate was slower than deamination, so that half of the deaminated AA was non-oxidized within 4 h. Non-oxidized carbon skeletons were poorly sequestrated in glycogen, although there was a significant postprandial production of hepatic glycogen. Our results strongly suggest that excess dietary AA-derived carbon skeletons above the ATP production capacity, are temporarily retained in intermediate metabolic pools until the oxidative capacities of the liver are no longer overwhelmed by an excess of substrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Azzout-Marniche D, Gaudichon C, Blouet C, Bos C, Mathe V, Huneau JF, Tome D (2007) Liver glyconeogenesis: a pathway to cope with postprandial amino acid excess in high-protein fed rats? Am J Physiol Regul Integr Comp Physiol 292(4):R1400–R1407

    Article  PubMed  CAS  Google Scholar 

  • Baba H, Zhang XJ, Wolfe RR (1995) Glycerol gluconeogenesis in fasting humans. Nutrition (Burbank, Los Angeles County Calif 11(2):149–153

    CAS  Google Scholar 

  • Baquet A, Lavoinne A, Hue L (1991) Comparison of the effects of various amino acids on glycogen synthesis, lipogenesis and ketogenesis in isolated rat hepatocytes. Biochem J 273(Pt 1):57–62

    PubMed  CAS  Google Scholar 

  • Baum JI, Layman DK, Freund GG, Rahn KA, Nakamura MT, Yudell BE (2006) A reduced carbohydrate, increased protein diet stabilizes glycemic control and minimizes adipose tissue glucose disposal in rats. J Nutr 136(7):1855–1861

    PubMed  CAS  Google Scholar 

  • Blouet C, Mariotti F, Azzout-Marniche D, Bos C, Mathe V, Tome D, Huneau JF (2006) The reduced energy intake of rats fed a high-protein low-carbohydrate diet explains the lower fat deposition, but macronutrient substitution accounts for the improved glycemic control. J Nutr 136(7):1849–1854

    PubMed  CAS  Google Scholar 

  • Bos C, Metges CC, Gaudichon C, Petzke KJ, Pueyo ME, Morens C, Everwand J, Benamouzig R, Tome D (2003) Postprandial kinetics of dietary amino acids are the main determinant of their metabolism after soy or milk protein ingestion in humans. J Nutr 133(5):1308–1315

    PubMed  CAS  Google Scholar 

  • Bos C, Juillet B, Fouillet H, Turlan L, Dare S, Luengo C, N’Tounda R, Benamouzig R, Gausseres N, Tome D, Gaudichon C (2005) Postprandial metabolic utilization of wheat protein in humans. Am J Clin Nutr 81(1):87–94

    PubMed  CAS  Google Scholar 

  • Botion LM, Kettelhut IC, Migliorini RH (1992). Reduced lipogenesis in rats fed a high-protein, carbohydrate-free diet: Participation of liver and four adipose depots. Brazilian journal of medical and biological research = Revista brasileira de pesquisas medicas e biologicas/Sociedade Brasileira de Biofisica [et al. 25(4): 419-428

  • Daenzer M, Petzke KJ, Bequette BJ, Metges CC (2001) Whole-body nitrogen and splanchnic amino acid metabolism differ in rats fed mixed diets containing casein or its corresponding amino acid mixture. J Nutr 131(7):1965–1972

    PubMed  CAS  Google Scholar 

  • Deglaire A, Fromentin C, Fouillet H, Airinei G, Gaudichon C, Boutry C, Benamouzig R, Moughan PJ, Tome D, Bos C (2009) Hydrolyzed dietary casein as compared with the intact protein reduces postprandial peripheral, but not whole-body, uptake of nitrogen in humans. Am J Clin Nutr 90(4):1011–1022

    Article  PubMed  CAS  Google Scholar 

  • Even PC, Perrier E, Aucouturier JL, Nicolaidis S (1991) Utilisation of the method of Kalman filtering for performing the on-line computation of background metabolism in the free-moving, free-feeding rat. Physiol Behav 49(1):177–187

    Article  PubMed  CAS  Google Scholar 

  • Even PC, Mokhtarian A, Pele A (1994) Practical aspects of indirect calorimetry in laboratory animals. Neurosci Biobehav Rev 18(3):435–447

    Article  PubMed  CAS  Google Scholar 

  • Farnsworth E, Luscombe ND, Noakes M, Wittert G, Argyiou E, Clifton PM (2003) Effect of a high-protein, energy-restricted diet on body composition, glycemic control, and lipid concentrations in overweight and obese hyperinsulinemic men and women. Am J Clin Nutr 78(1):31–39

    PubMed  CAS  Google Scholar 

  • Fouillet H, Mariotti F, Gaudichon C, Bos C, Tome D (2002) Peripheral and splanchnic metabolism of dietary nitrogen are differently affected by the protein source in humans as assessed by compartmental modeling. J Nutr 132(1):125–133

    PubMed  CAS  Google Scholar 

  • Fouillet H, Juillet B, Bos C, Mariotti F, Gaudichon C, Benamouzig R, Tome D (2008) Urea-nitrogen production and salvage are modulated by protein intake in fed humans: results of an oral stable-isotope-tracer protocol and compartmental modeling. Am J Clin Nutr 87(6):1702–1714

    PubMed  CAS  Google Scholar 

  • Fukao T, Lopaschuk GD, Mitchell GA (2004) Pathways and control of ketone body metabolism: on the fringe of lipid biochemistry. Prostaglandins Leukot Essent Fatty Acids 70(3):243–251

    Article  PubMed  CAS  Google Scholar 

  • Gannon MC (1993) The effect of oral casein on hepatic glycogen metabolism in fasted rats. Metab Clin Exp 42(5):649–653

    PubMed  CAS  Google Scholar 

  • Gannon MC, Nuttall FQ (1995) Physiological doses of oral casein affect hepatic glycogen metabolism in normal food-deprived rats. J Nutr 125(5):1159–1166

    PubMed  CAS  Google Scholar 

  • Gannon MC, Nuttall FQ, Saeed A, Jordan K, Hoover H (2003) An increase in dietary protein improves the blood glucose response in persons with type 2 diabetes. Am J Clin Nutr 78(4):734–741

    PubMed  CAS  Google Scholar 

  • Gaudichon C, Mahe S, Benamouzig R, Luengo C, Fouillet H, Dare S, Van Oycke M, Ferriere F, Rautureau J, Tome D (1999) Net postprandial utilization of [15n]-labeled milk protein nitrogen is influenced by diet composition in humans. J Nutr 129(4):890–895

    PubMed  CAS  Google Scholar 

  • Hegardt FG (1998) Transcriptional regulation of mitochondrial HMG-COA synthase in the control of ketogenesis. Biochimie 80(10):803–806

    Article  PubMed  CAS  Google Scholar 

  • Jungas RL, Halperin ML, Brosnan JT (1992) Quantitative analysis of amino acid oxidation and related gluconeogenesis in humans. Physiol Rev 72(2):419–448

    PubMed  CAS  Google Scholar 

  • Kaloyianni M, Freedland RA (1990) Contribution of several amino acids and lactate to gluconeogenesis in hepatocytes isolated from rats fed various diets. J Nutr 120(1):116–122

    PubMed  CAS  Google Scholar 

  • Khan MA, Gannon MC, Nuttall FQ (1992) Glucose appearance rate following protein ingestion in normal subjects. J Am Coll Nutr 11(6):701–706

    PubMed  CAS  Google Scholar 

  • Krebs M, Brehm A, Krssak M, Anderwald C, Bernroider E, Nowotny P, Roth E, Chandramouli V, Landau BR, Waldhausl W, Roden M (2003) Direct and indirect effects of amino acids on hepatic glucose metabolism in humans. Diabetologia 46(7):917–925

    Article  PubMed  CAS  Google Scholar 

  • Krezowski PA, Nuttall FQ, Gannon MC, Bartosh NH (1986) The effect of protein ingestion on the metabolic response to oral glucose in normal individuals. Am J Clin Nutr 44(6):847–856

    PubMed  CAS  Google Scholar 

  • Kulaylat MN, Frexes-Steed M, Geer R, Williams PE, Abumrad NN (1988) The role of leucine in hepatic ketogenesis. Surgery 103(3):351–360

    PubMed  CAS  Google Scholar 

  • Lacroix M, Bos C, Leonil J, Airinei G, Luengo C, Dare S, Benamouzig R, Fouillet H, Fauquant J, Tome D, Gaudichon C (2006) Compared with casein or total milk protein, digestion of milk soluble proteins is too rapid to sustain the anabolic postprandial amino acid requirement. Am J Clin Nutr 84(5):1070–1079

    PubMed  CAS  Google Scholar 

  • Lemosquet S, Thibault JN, Thomas A, Debras E, Hurtaud C (2004) Validation of the measurement of glucose appearance rate with [6, 6–2h2]glucose in lactating dairy cows. Reprod Nutr Dev 44(1):17–27

    Article  PubMed  CAS  Google Scholar 

  • Linn T, Geyer R, Prassek S, Laube H (1996) Effect of dietary protein intake on insulin secretion and glucose metabolism in insulin-dependent diabetes mellitus. J Clin Endocrinol Metab 81(11):3938–3943

    Article  PubMed  CAS  Google Scholar 

  • Linn T, Santosa B, Gronemeyer D, Aygen S, Scholz N, Busch M, Bretzel RG (2000) Effect of long-term dietary protein intake on glucose metabolism in humans. Diabetologia 43(10):1257–1265

    Article  PubMed  CAS  Google Scholar 

  • Luengo C, Azzout-Marniche D, Fromentin C, Piedcoq J, Lemosquet S, Tome D, Gaudichon C (2009) [13c] GC-C-IRMS analysis of methylboronic acid derivatives of glucose from liver glycogen after the ingestion of [13C] labeled tracers in rats. J Chromatogr 877(29):3638–3644

    Article  CAS  Google Scholar 

  • Morens C, Gaudichon C, Metges CC, Fromentin G, Baglieri A, Even PC, Huneau JF, Tome D (2000) A high-protein meal exceeds anabolic and catabolic capacities in rats adapted to a normal protein diet. J Nutr 130(9):2312–2321

    PubMed  CAS  Google Scholar 

  • Morens C, Gaudichon C, Fromentin G, Marsset-Baglieri A, Bensaid A, Larue-Achagiotis C, Luengo C, Tome D (2001) Daily delivery of dietary nitrogen to the periphery is stable in rats adapted to increased protein intake. Am J Physiol 281(4):E826–E836

    CAS  Google Scholar 

  • Morens C, Bos C, Pueyo ME, Benamouzig R, Gausseres N, Luengo C, Tome D, Gaudichon C (2003) Increasing habitual protein intake accentuates differences in postprandial dietary nitrogen utilization between protein sources in humans. J Nutr 133(9):2733–2740

    PubMed  CAS  Google Scholar 

  • Nicolaidis S, Rowland N, Meile MJ, Marfaing-Jallat P, Pesez A (1974) A flexible technique for long term infusions in unrestrained rats. Pharmacol Biochem Behav 2(1):131–136

    Article  PubMed  CAS  Google Scholar 

  • Noda C, Ichihara A (1974) Control of ketogenesis from amino acids. Ii. Ketone bodies formation from alpha-ketoisocaproate, the keto-analogue of leucine, by rat liver mitochondria. J Biochem 76(5):1123–1130

    PubMed  CAS  Google Scholar 

  • Nuttall FQ, Gannon MC (1990) Metabolic response to egg white and cottage cheese protein in normal subjects. Metab Clin Exp 39(7):749–755

    PubMed  CAS  Google Scholar 

  • Obeid OA, Boukarim LK, Al Awar RM, Hwalla N (2006) Postprandial glycogen and lipid synthesis in prednisolone-treated rats maintained on high-protein diets with varied carbohydrate levels. Nutrition (Burbank, Los Angeles County Calif 22(3):288–294

    CAS  Google Scholar 

  • Peret J, Chanez M, Cota J, Macaire I (1975) Effects of quantity and quality of dietary protein and variation in certain enzyme activities on glucose metabolism in the rat. J Nutr 105(12):1525–1534

    PubMed  CAS  Google Scholar 

  • Peret J, Foustock S, Chanez M, Bois-Joyeux B, Robinson JL (1981) Hepatic metabolites and amino acid levels during adaptation of rats to a high protein, carbohydrate-free diet. J Nutr 111(10):1704–1710

    PubMed  CAS  Google Scholar 

  • Peroni O, Large V, Diraison F, Beylot M (1997) Glucose production and gluconeogenesis in postabsorptive and starved normal and streptozotocin-diabetic rats. Metab Clin Exp 46(11):1358–1363

    PubMed  CAS  Google Scholar 

  • Pichon L, Huneau JF, Fromentin G, Tome D (2006) A high-protein, high-fat, carbohydrate-free diet reduces energy intake, hepatic lipogenesis, and adiposity in rats. J Nutr 136(5):1256–1260

    PubMed  CAS  Google Scholar 

  • Podolin DA, Wei Y, Pagliassotti MJ (1999) Effects of a high-fat diet and voluntary wheel running on gluconeogenesis and lipolysis in rats. J Appl Physiol 86(4):1374–1380

    PubMed  CAS  Google Scholar 

  • Remesy C, Demigne C, Aufrere J (1978) Inter-organ relationships between glucose, lactate and amino acids in rats fed on high-carbohydrate or high-protein diets. Biochem J 170(2):321–329

    CAS  Google Scholar 

  • Robinson JL, Foustock S, Chanez M, Bois-Joyeux B, Peret J (1981) Circadian variation of liver metabolites and amino acids in rats adapted to a high protein, carbohydrate-free diet. J Nutr 111(10):1711–1720

    PubMed  CAS  Google Scholar 

  • Rossetti L, Rothman DL, DeFronzo RA, Shulman GI (1989) Effect of dietary protein on in vivo insulin action and liver glycogen repletion. Am J Physiol 257(2 Pt 1):E212–E219

    PubMed  CAS  Google Scholar 

  • Saadatian M, Peroni O, Diraison F, Beylot M (2000) In vivo measurement of gluconeogenesis in animals and humans with deuterated water: a simplified method. Diabetes Metab 26(3):202–209

    PubMed  CAS  Google Scholar 

  • Schmid H, Kettelhut IC, Migliorini RH (1984) Reduced lipogenesis in rats fed a high-protein carbohydrate-free diet. Metab Clin Exp 33(3):219–223

    PubMed  CAS  Google Scholar 

  • Sève B, Le Floc’h N (2000) Le devenir des protéines et des acides aminés dans l’intestin du porc: De la digestion à l’apparition dans la veine porte. INRA Production Animale 13(5):11

    Google Scholar 

  • Sharp PE, La Regina MC (1998) The laboratory rat, 1st edn. CRC Press, Boca Raton

    Google Scholar 

  • Thomas LK, Ittmann M, Cooper C (1982) The role of leucine in ketogenesis in starved rats. Biochem J 204(2):399–403

    PubMed  CAS  Google Scholar 

  • Wahren J, Ekberg K (2007) Splanchnic regulation of glucose production. Annu Rev Nutr 27:329–345

    Article  PubMed  CAS  Google Scholar 

  • Weir JB (1949) New methods for calculating metabolic rate with special reference to protein metabolism. J Physiol 109(1–2):1–9

    PubMed  Google Scholar 

  • Werner W, Rey HG, Wielinger H (1970) Über die eigenschaften eines neuen chromogens für die blutzuckerbestimmung nach der god/pod-methode Fresenius’. J Anal Chem 252(Numbers 2-3):224–228

    CAS  Google Scholar 

  • Westphal SA, Gannon MC, Nuttall FQ (1990) Metabolic response to glucose ingested with various amounts of protein. Am J Clin Nutr 52(2):267–272

    PubMed  CAS  Google Scholar 

  • Williamson DH (1981) Mechanisms for the regulation of ketogenesis. Proc Nutr Soc 40(1):93–98

    Article  PubMed  CAS  Google Scholar 

  • Wu G (1998) Intestinal mucosal amino acid catabolism. J Nutr 128(8):1249–1252

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are indebted to the foundation Le Lous for their financial support. We thank Sophie Daré for her help in animal catheterization and in indirect calorimetry experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claire Gaudichon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fromentin, C., Azzout-Marniche, D., Tomé, D. et al. The postprandial use of dietary amino acids as an energy substrate is delayed after the deamination process in rats adapted for 2 weeks to a high protein diet. Amino Acids 40, 1461–1472 (2011). https://doi.org/10.1007/s00726-010-0756-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-010-0756-3

Keywords

Navigation