Skip to main content
Log in

Recent synthesis of aminophosphonic acids as potential biological importance

  • Review Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Aminophosphonic acids are an important group of medicinal compounds, and their synthesis has been a focus of considerable attention in synthetic organic chemistry as well as medicinal chemistry. Although the phosphonic and carboxylic acid groups differ considerably with respect to shape, size, and acidity, α-aminophosphonic acids are considered to be structural analogues of the corresponding amino acids and the transition state mimics peptide hydrolysis. This review summarizes recent developments in the synthesis, characterization and biological activity of α-aminophosphonic acid and N-analogues. An account of both uses will be presented, emphasizing one of the potential future developments, and some implications in medicinal chemistry are also disclosed. In addition, a brief account on the characterization of N-(phosphonomethyl) glycine derivatives will be presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Scheme 2
Scheme 3
Scheme 4
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Amrhein N, Deus B, Gehrke P, Steinrücken H (1980) The site of the inhibition of the shikimate pathway by glyphosate. II. Interference of glyphosate with chorismate formation in vivo and in vitro. Plant Physiol 66:830–834. doi:10.1104/pp.66.5.830

    Article  CAS  PubMed  Google Scholar 

  • Baird D, Upchurch R, Homesley W, Franz J (1971) Introduction of a new broadspectrum postemergence herbicide class with utility for herbaceous perennial weed control. Proc N Cent Weed Contr Conf 26:64–68

    CAS  Google Scholar 

  • Bhattacharya AK, Rana KC (2008) Amberlite-IR 120 catalyzed three-component synthesis of alfa-amino phosphonates in one-pot. Tetrahedron Lett 49:2598–2601

    Article  CAS  Google Scholar 

  • Bigge C, Johnson G, Ortwine D, Drummond J, Retz D, Brahce L, Coughenour L, Marcoux F, Probert A (1992) Exploration of N-phosphonoalkyl-, N-phosphonoalkenyl-, and N-(phosphonoalkyl)phenyl-spaced alpha-amino acids as competitive N-methyl-d-aspartic acid antagonists. J Med Chem 35:1371–1384. doi:10.1021/jm00086a005

    Article  CAS  PubMed  Google Scholar 

  • Boduszek B (1995) An efficient synthesis of 1-aminophosphonic acids and esters bearing heterocyclic moiety. Phosphorus Sulfur Silicon Relat Elem 104:63–70. doi:10.1080/10426509508042578

    Article  CAS  Google Scholar 

  • Boduszek B (1996) 1-Aminophosphonic acids and esters bearing heterocyclic moiety. Part 2.1 pyridine, pyrrole and emidazole derivative. Phosphorus Sulfur Silicon Relat Elem 113:209–218. doi:10.1080/10426509608046390

    Article  CAS  Google Scholar 

  • Boto A, Gallardo J, Hernandez R, Saavedra C (2005) One-pot synthesis of alfa-amino phosphonates from alfa-amino acids and beta-amino alcohols. Tetrahedron Lett 46:7807–7811. doi:10.1016/j.tetlet.2005.09.019

    Article  CAS  Google Scholar 

  • Camden JB (1997) Pharmaceutical composition for inhibiting the growth of viruses and cancers. US Patent 5,665,713

  • Camden JB (1997) Pharmaceutical composition for inhibiting the growth of cancers and viruses in mammals. US Patent 5,656,615

  • Camden JB (1998) Pharmaceutical composition for inhibiting the growth of cancers. US Patent 5,854,231

  • Camden JB (1999) Pharmaceutical composition for inhibiting the growth of viruses and cancers. US Patent 5,902,804

  • Camden JB (2000) Pharmaceutical composition for inhibiting the growth of cancers US Patent 6,090,796

  • Cherkasov R (1998) The Kabachnik–Fields reaction: synthetic potential and the problem of the mechanism. Russ Chem Rev 67(10):857–882. doi:10.1070/RC1998v067n10ABEH000421

    Article  Google Scholar 

  • Chykaliuk P, Abernathy J, Gipson J (1980) Bibliography of glyphosate. The Texas Agricultural Experimental Station, Lubbock

    Google Scholar 

  • Djokic DD, Jankovic DL, Nikolic NS (2008) Labeling, characterization, and in vivo localization of a new 90Y-based phosphonate chelate 2,3-dicarboxypropane-1,1-diphosphonic acid for the treatment of bone metastases: comparison with 99mTc-DPD complex. Bioorg Med Chem 16:4457–4465. doi:10.1016/j.bmc.2008.02.062

    Article  CAS  PubMed  Google Scholar 

  • Engelmann M, Pikl J (1942) Organic compound and process of preparing the same. US Patent 2,304,156

  • Fields EK (1952) The synthesis of esters of substituted amino phosphonic acids. J Am Chem Soc 74:1528–1531. doi:10.1021/ja01126a054

    Article  CAS  Google Scholar 

  • Fields DE, Lee LF, Richard TJ (1989) Process for making glyphosate from N-phosphonomethyl-2-oxazolidinone. US Patent 4,810,426

  • Finlay I, Mason M, Shelley M (2005) Radioisotopes for the palliation of metastatic bone cancer: a systematic review. Lancet Oncol 6:392–400. doi:10.1016/S1470-2045(05)70206-0

    Article  CAS  PubMed  Google Scholar 

  • Franz JE (1974) N-phosphonomethylglycine phytotoxicant composition. US Patent 3,799,758

  • Franz JE, Mao KK, Sirorski JA (1997) Glyphosate: a unique global herbicide, ACS Monograph 189, American Chemical Society, Washington, DC

  • Galkin V, Zvereva E, Sobanov A, Galkina I, Cherkasov R (1993) Kinetics and mechanism of the Kabachnik–Fields reaction in system dialkylphosphite–benzaldehyde–aniline. Zh Obshch Khim 63:2224–2227

    CAS  Google Scholar 

  • Gancarz R (1995) Nucleophilic addition to carbonyl compounds. Competition between hard (amine) and soft (phosphite) nucleophile. Tetrahedron 51:10627–10632. doi:10.1016/0040-4020(95)00634-K

    Article  CAS  Google Scholar 

  • Gancarz R, Gancarz I (1993) Failure of aminophosphonate synthesis due to facile hydroxyphosphonate-phosphate rearrangement. Tetrahedron Lett 34:145–148. doi:10.1016/S0040-4039(00)60079-5

    Article  CAS  Google Scholar 

  • Goding JW (1986) Monoclonal antibodies. Principles and practice. Academic Press, NY

    Google Scholar 

  • Grossbard E, Atkinson D (1985) The herbicide glyphosate. Butterworths, London

    Google Scholar 

  • Hackenberg U, Bartling H (1959) Measurement & calculation in pharmacological laboratories with a special numbering system (WL24-system). Arch Exp Pharmakol 235:437–463. doi:10.1007/BF00246706

    Article  CAS  Google Scholar 

  • Haslam E (1974) The shikimate pathway. Wiley, New York

    Google Scholar 

  • Horiguchi M, Kandatsu M (1959) Isolation of 2-aminoethane phosphonic acid from rumen protozoa. Nature 184:901–902. doi:10.1038/184901b0

    Article  CAS  PubMed  Google Scholar 

  • Huber JW, Gilmore F (1975) Synthesis and antimicrobial evaluation of N-d-alanyl-1-aminoethylphosphonic acid. J Med Chem 18:106. doi:10.1021/jm00235a024

    Article  CAS  PubMed  Google Scholar 

  • Kabachnik MJ, Medved TY (1952) New method for preparation of α-aminophosphonic acids. Dokl Akad Nauk SSSR 83:689

    CAS  Google Scholar 

  • Kabachnik MJ, Medved TY (1953) New method for the synthesis of 1-aminoalkylphosphonic acids communication 1. Bull Acad Sci USSR 2:769–777. doi:10.1007/BF01178856

    Article  Google Scholar 

  • Kafarski P, Lejczak B (2000) Aminophosphonic and aminophosphinic acids. chemistry and biological activity, Wiley, New York, p 407

  • Kafarski P, Lejczak B (2001) Aminophosphonic acids of potential medical importance. Curr Med Chem Anticancer Agents 1:301–312

    Article  CAS  PubMed  Google Scholar 

  • Kraicheva I (2003) Synthesis and NMR spectroscopic study of a new anthracene derived schiff base and a bis(aminophosphonate) obtained from it. Phosphorus Sulfur Silicon Relat Elem 178:191. doi:10.1080/10426500307783

    Article  CAS  Google Scholar 

  • Kraicheva I, Finocchiaro P, Failla S (2002) Synthesis and NMR spectroscopic study of a new bis(aminophosphonate) with terminal furyl groups. Phosphorus Sulfur Silicon Relat Elem 177:2915. doi:10.1080/10426500214891

    Article  CAS  Google Scholar 

  • Lee S, Lee J, Song C, Kim D (2002) Microwave-assisted Kabachnik–Fields reaction in ionic liquid. Bull Korean Chem Soc 23:667–668

    Article  CAS  Google Scholar 

  • Lolas P, Coble H (2006) Translocation of 14C-glyphosate in johnsongrass (Sorghum halepense L. Pers.) as affected by growth stage and rhizome length. Weed Res 20(5):267–270. doi:10.1111/j.1365-3180.1980.tb01617.x

    Article  Google Scholar 

  • Maury C, Royer J, Husson HP (1992) A simple and general method for the asymmetric synthesis of α-aminophosphonic acids. Tetrahedron Lett 33:6127–6130. doi:10.1016/S0040-4039(00)60023-0

    Article  CAS  Google Scholar 

  • Medved T, Kabachnik MI (1954) New method for the synthesis of 1-aminoalkyl-phosphonic and phosphinic acids Communication 4. Synthesis of (1-aminoalkyl)phenylphosphinic acids. Bull Acad Sci USSR 3(6):893–900

    Google Scholar 

  • Meek TD, Villafranca JJ (1980) Kinetic mechanism of Escherichia coli glutamine synthetase. Biochemistry 19:5513–5519. doi:10.1021/bi00565a008

    Article  CAS  PubMed  Google Scholar 

  • Momekov G, Todorov P, Naydenova E, Kostovski A, Troev K (2007) Cytotoxic activity of new α-aminophosphonic acids against human malignant cell lines. Pharmacia 54:9–11

    CAS  Google Scholar 

  • Mu XJ, Lei MY, Zou JP, Zhang W (2006) Microwave-assisted solvent-free and catalyst-free Kabachnik–Fields reactions for α-amino phosphonates. Tetrahedron Lett 47:1125–1127. doi:10.1016/j.tetlet.2005.12.027

    Article  CAS  Google Scholar 

  • Naydenova E, Vassilev A, Popova Y, Troev K (2003) Phosphonylmethylaminocyclopentane-1-carboxylic acid. Heteroatom Chem 14(3):229–230. doi:10.1002/hc.10124

    Article  CAS  Google Scholar 

  • Naydenova E, Topashka-Ancheva M, Todorov P, Yordanova T, Troev K (2006) Novel α-aminophosphonic acids. Design, characterization, and biological activity. Bioorg Med Chem 14:2190–2196. doi:10.1016/j.bmc.2005.11.002

    Article  CAS  PubMed  Google Scholar 

  • Naydenova E, Troev K, Topashka-Ancheva M, Haegele G, Ivanov I, Kril A (2007) Synthesis, cytotoxicity and clastogenicity of novel α-aminophosphonic acids. Amino Acids 33:695–702. doi:10.1007/s00726-006-0459-y

    Article  CAS  PubMed  Google Scholar 

  • Naydenova E, Todorov P, Topashka-Ancheva M, Momekov G, Yordanova T, Konstantinov S, Troev K (2008a) Novel N-(phosphonomethyl) glycine derivatives. Design, characterization and biological activity. Eur J Med Chem 43(6):1199–1205. doi:10.1016/j.ejmech.2007.08.010

    Article  CAS  PubMed  Google Scholar 

  • Naydenova E, Todorov P, Troev K (2008) Synthesis and characterization of novel cycloalkanespiro-5-hydantoin phosphonic acids. Phosphorus Sulfur Silicon Relat Elem (in press)

  • Naylor R (2002) Weed management handbook, 11th chapter “herbicide-resistant weeds”, 9th edn. Blackwell, Banchory

  • Oleksyszyn J, Boduszek B, Kam C-M, Powers JC (1994) Novel amidine-containing peptidyl phosphonates as irreversible inhibitors for blood coagulation and related serine proteases. J Med Chem 37:226–231. doi:10.1021/jm00028a004

    Article  CAS  PubMed  Google Scholar 

  • Petrov K, Chuzov V, Erohina T (1974) Aminoalkyl organophosphorus compounds. Russ Chem Rev 43:984–1006. doi:10.1070/RC1974v043n11ABEH001877

    Article  Google Scholar 

  • Pikl J (1943) Organic compound and process for preparing the same. US Patent 2,328,358

  • Preston R, Dean B, Galloway S, Holden H, Mc Fee AF, Sheldy M (1987) Mammalian in vivo cytogenetic assays. Analysis of chromosome aberrations in bone marrow cells. Mutat Res 189:157–165. doi:10.1016/0165-1218(87)90021-8

    Article  CAS  PubMed  Google Scholar 

  • Rabasso N, Louaisil N, Fadel A (2006) Synthesis of alfa-amino tetrahydropyranyl-, tetrahydro thiopyranyl-,4- and 3-piperidinyl-phosphonic acids via phosphite addition to iminium ions. Tetrahedron 62:7445–7454. doi:10.1016/j.tet.2006.05.016

    Article  CAS  Google Scholar 

  • Redmore D (1978) Chemistry of phosphorous acid: new routes to phosphonic acids and phosphate esters. J Org Chem 43:992–996. doi:10.1021/jo00399a041

    Article  Google Scholar 

  • Richard S, Moslemi S, Sipahutar H, Benachour N, Seralini G-E (2005) Differential effects of glyphosate and roundup on human placental cells and aromatase. Environ Health Perspect 113:716–720

    Article  CAS  PubMed  Google Scholar 

  • Roberts F, Roberts CW, Johnson JJ, Kyle DE, Krell T, Coggins JR, Coombs GH, Milhous WK, Tzipori S, Ferguson DJ, Chakrabarti D, McLeod R (1998) Evidence for the shikimate pathway in apicomplexan parasites. Nature 393:801–805. doi:10.1038/30718

    Article  CAS  PubMed  Google Scholar 

  • Rueppel ML, Brightwell BB, Schaefer J, Marvel JT (1977) Metabolism and degradation of glyphosate in soil and water. J Agric Food Chem 25(3):517–528. doi:10.1021/jf60211a018

    Article  CAS  PubMed  Google Scholar 

  • Sandberg C, Meggitt W, Penner D (1980) Absorption, translocation, and metabolism of 14C-glyphosate in several weed species. Weed Res 20:195–200. doi:10.1111/j.1365-3180.1980.tb00068.x

    Article  CAS  Google Scholar 

  • Sardarian A, Kaboudin B (1997) A novel synthesis of diethyl 1-aminoarylmethylphosphonates on the surface of alumina. Tetrahedron Lett 38(14):2543–2546. doi:10.1016/S0040-4039(97)00396-1

    Article  CAS  Google Scholar 

  • Sprankle P, Meggitt W, Penner D (1975) Absorption, action, and translocation of glyphosate. Weed Sci 23:235

    CAS  Google Scholar 

  • Stemerick D (1997) Farnesyl:protein transferase inhibitors as anticancer agents. US Patent 5,665,715

  • Todorov P, Naydenova E, Petrova R, Shivachev B, Troev K (2006a) [(4,4-Dimethyl-2-oxo-1,3-oxazolidin-3-yl)methyl]phosphonic acid. Acta Crystallogr C 62(11):o661–o662. doi:10.1107/S0108270106041230

    Article  PubMed  CAS  Google Scholar 

  • Todorov P, Naydenova E, Topashka-Ancheva M, Yordanova T, Troev K (2006b) Synthesis, genotoxic and antiproliferative effects of new aminophosphonic acids. Bulgarian Chem Commun 38:20–23

    CAS  Google Scholar 

  • Todorov P, Naydenova E, Momekov G, Troev K (2007) Antitumor activity of new alpha-aminophosphonic acids and oligopeptides. Peptides 2006. In: Rolka K, Rekowski P, Silberring J (eds) Proceeding of 29th European peptide symposium, pp 152–153

  • Todorov P, Naydenova E, Popova J, Troev K (2008) Synthesis and characterization of novel (9H-fluoren-9-ylamino)carbonylaminomethylphosphonic acid. Heteroatom Chem 19:719–722

    Article  CAS  Google Scholar 

  • Tomlin CDS (ed) (1997) The pesticide manual—a world compendium, 11th edn. British Crop Protection Council, Surrey, p 309

  • Troev K (1997) Unexpected formation of 1,4,2-oxazaphosphorinane via thermol decomposition of poly(urethane phosponate). Phosphorus Sulfur Silicon Relat Elem 127:167–170. doi:10.1080/10426509708040506

    Article  CAS  Google Scholar 

  • Troev K (2000) Study of the reactions of dimethyl hydrogen phosphonate with urethane and acetanilide. Heteroatom Chem 11:205–208. doi:10.1002/(SICI)1098-1071(2000)11:3<205::AID-HC7>3.0.CO;2-4

    Article  CAS  Google Scholar 

  • Troev K (2006) Chemistry and application of H-phosphonates. Elsevier, Amsterdam

    Google Scholar 

  • Troev K, Tsevi R (1998) Interaction between 2,4,6-triamino-1,3,5-triazine and alkyl esters of phosphonic and phosphorus acids. Phosphorus Sulfur Silicon Relat Elem 133:61–68. doi:10.1080/10426509808032453

    Article  CAS  Google Scholar 

  • Troev K, Hägele G, Kreidler K, Olschner R, Verwey C, Roundhill DM (1999a) Anovel route to an aminophosphonic acid by thermolysis of a poly(urethane phosphonate). The betain form of 3-ethyl-2-hydroxy-2-oxo-1,4,2-oxazaphosphorinane. Structure and properties. Phosphorus Sulfur Silicon Relat Elem 148:161–176. doi:10.1080/10426509908037008

    Article  CAS  Google Scholar 

  • Troev K, Cremer S, Hägele G (1999b) A new synthetic approach to α-aminophosphonic acids: synthesis and NMR characterization. Heteroatom Chem 10:627–631. doi:10.1002/(SICI)1098-1071(1999)10:7<627::AID-HC17>3.0.CO;2-C

    Article  CAS  Google Scholar 

  • Troev K, Koseva N, Hägele G (2008) Novel routes to aminophosphonic acids: interaction of dimethyl H-phosphonate with hydroxyalkyl carbamates. Heteroatom Chem 19:119–124. doi:10.1002/hc.20404

    Article  CAS  Google Scholar 

  • Tyka R (1970) Novel synthesis of α-aminophosphonic acids. Tetrahedron Lett 11:677–680. doi:10.1016/S0040-4039(01)97800-1

    Article  Google Scholar 

  • Wong RY, Bunker NS (1985) Method for preparation of N-phosphonomethylglycine. US Patent 4,547,324

Download references

Acknowledgments

We gratefully acknowledge the financial support by Grant “BYX-15” of the Ministry of Education and Science, Bulgaria and to the University of Chemical Technology and Metallurgy, Sofia, contract no. 10507.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emilia D. Naydenova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Naydenova, E.D., Todorov, P.T. & Troev, K.D. Recent synthesis of aminophosphonic acids as potential biological importance. Amino Acids 38, 23–30 (2010). https://doi.org/10.1007/s00726-009-0254-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-009-0254-7

Keywords

Navigation