Skip to main content
Log in

Amino acids and gut function

  • Review Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

The intestine is not only critical for the absorption of nutrients, but also interacts with a complex external milieu. Most foreign antigens enter the body through the digestive tract. Dietary amino acids are major fuels for the small intestinal mucosa, as well as important substrates for syntheses of intestinal proteins, nitric oxide, polyamines, and other products with enormous biological importance. Recent studies support potential therapeutic roles for specific amino acids (including glutamine, glutamate, arginine, glycine, lysine, threonine, and sulfur-containing amino acids) in gut-related diseases. Results of these new lines of work indicate trophic and cytoprotective effects of amino acids on gut integrity, growth, and health in animals and humans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

cNOS:

Constitutive nitric oxide synthase

iNOS:

Inducible nitric oxide synthase

NO:

Nitric oxide

NOS:

Nitric oxide synthase

TPN:

Total parenteral nutrition

References

  • Ahlman B, Leijonmarck CE, Wernerman J (1993) The content of free amino acids in the human duodenal mucosa. Clin Nutr 12:226–271

    Google Scholar 

  • Alican I, Kubes P (1996) A critical role for nitric oxide in intestinal barrier function and dysfunction. Am J Physiol 270:G225–G237

    PubMed  CAS  Google Scholar 

  • Amin HJ, Zamora SA, McMillan DD, Fick GH, Butzner JD, Parsons HG, Scott RB (2002) Arginine supplementation prevents neocrotizing enterocolitis in the premature infant. J Pediatr 140:425–431

    Article  PubMed  CAS  Google Scholar 

  • Aw TY, Williams MW (1992) Intestinal absorption and lymphatic transport of peroxidized lipids in rats: effect of exogenous GSH. Am J Physiol 263:G665–G672

    PubMed  CAS  Google Scholar 

  • Aw TY, Williams MW, Gray L (1992) Absorption and lymphatic transport of peroxidized lipids by rat small intestine in vivo: role of mucosal GSH. Am J Physiol 262:G99–G106

    PubMed  CAS  Google Scholar 

  • Baskerville A, Hambleton P, Benbough JE (1980) Pathologic features of glutaminase toxicity. Br J Exp Pathol 61:132–138

    PubMed  CAS  Google Scholar 

  • Bertolo RFP, Chen CZL, Law G, Pencharz PB, Ball RO (1998) Threonine requirement of neonatal piglets receiving total parenteral nutrition is considerably lower than that of piglets receiving an identical diet intragastrically. J Nutr 128:1752–1759

    PubMed  CAS  Google Scholar 

  • Chambon-Savanovitch C, Farges M, Raul F, Blachier F, Davot P, Cynober L, Vasson M (1999) Can a glutamate-enriched diet counteract glutamine depletion in endotoxemic rats? J Nutr Biochem 10:331–337

    Article  PubMed  CAS  Google Scholar 

  • Chen LX, Yin YL, Jobgen WS, Jobgen SC, Knabe DA, Hu WX, Wu G (2007) In vitro oxidation of essential amino acids by intestinal mucosal cells of growing pigs. Livest Sci 109:19–23

    Article  Google Scholar 

  • Corl BA, Odle J, Niu XM, Moeser AJ, Gatlin LA, Phillips OT, Blikslager AT, Rhoads JM (2008) Arginine activates intestinal p70(S6k) and protein synthesis in piglet rotavivrus enteritis. J Nutr 138:24–29

    PubMed  CAS  Google Scholar 

  • Domeneghini C, Giancamillo AD, Bosi G, Arrighi S (2006) Can nutraceuticals affect the structure of intestinal mucosa? Qualitative and quantitative microanatomy in L-glutamine diet-supplemented weaning piglets. Vet Res Comm 30:331–342

    Article  CAS  Google Scholar 

  • Ersin S, Tuncyurek P, Esassolak M, Alkanat M, Buke C, Yilmaz M, Telefoncu A, Kose T (2000) The prophylactic and therapeutic effects of glutamine- and arginine-enriched diets on radiation-induced enteritis in rats. J Surg Res 89:121–125

    Article  PubMed  CAS  Google Scholar 

  • Fang ZF, Luo J, Qi ZL, Huang FR, Zhao SJ, Liu MY, Jiang SW, Peng J (2008) Effects of 2-hydroxy-4-methylthiobutyrate on portal plasma flow and net portal appearance of amino acids in piglets. Amino Acids. doi: 10.1007/s00726-008-0110-1

  • Faure M, Choné F, Mettraux C, Godin JP, Béchereau F, Vuichoud J, Pepet I, Breuillé D, Obled C (2007) Threonine utilization for synthesis of acute phase proteins, intestinal proteins, and mucins is increased during sepsis in rats. J Nutr 137:1802–1807

    PubMed  CAS  Google Scholar 

  • Faure M, Mettraux C, Moennoz D, Godin J, Vuichoud J, Rochat F, Breuillé D, Obled C, Corthésy-Theulaz I (2006) Specific amino acids increase mucin synthesis and microbiota in dextran sulfate sodium-treated rats. J Nutr 136:1558–1564

    PubMed  CAS  Google Scholar 

  • Faure M, Moënnoz D, Montigon F, Mettraux C, Breuillé D, Ballèvre O (2005) Dietary threonine restriction specifically reduces intestinal mucin synthesis in rats. J Nutr 135:486–491

    PubMed  CAS  Google Scholar 

  • Field CJ, Johnson IR, Schley PD (2002) Nutrients and their role in host resistance to infection. J Leukoc Biol 71:16–32

    PubMed  CAS  Google Scholar 

  • Finkelstein JD (2000) Pathways and regulation of homocysteine metabolism in mammals. Semin Thromb Hemost 26:219–225

    Article  PubMed  CAS  Google Scholar 

  • Frankel WL, Zhang W, Afonso J, Klurfeld DM, Don SH, Laitin E, Deaton D, Furth EE, Pietra GG, Naji A (1993) Glutamine enhancement of structure and function in transplanted small intestine in the rat. J Parenter Enteral Nutr 17:47–55

    Article  CAS  Google Scholar 

  • Gewirtz AT, Liu Y, Sitaraman SV, Madara JL (2002) Intestinal epithelial pathobiology: past, present and future. Best Pract Res Clin Gastroenterol 16:851–867

    Article  PubMed  CAS  Google Scholar 

  • Grimble RF (2006) The effects of sulfur amino acids intake on immune function in humans. J Nutr 136:1660S–1665S

    PubMed  CAS  Google Scholar 

  • Gu XH (2000) Effects of weaning day, dietary protein and lysine levels on digestive organ structure and function in early-weaned piglets. Ph.D. thesis (in Chinese). China Agricultural University, Beijing, China

  • Gurbuz AT, Kunzelman J, Ratzer EE (1998) Supplemental dietary arginine accelerates intestinal mucosal regeneration and enhances bacterial clearance following radiation enteritis in rats. J Surg Res 74:149–154

    Article  PubMed  CAS  Google Scholar 

  • Hall JC (1998) Glycine. J Parenter Enteral Nutr 22:393–398

    Article  CAS  Google Scholar 

  • Hasebe M, Suzuki H, Mori E, Furukawa J, Kobayashi K, Ueda Y (1999) Glutamate in enteral nutrition: can glutamate replace glutamine in supplementation to enteral nutrition in burned rats? J Parenter Enteral Nutr 23:S78–S82

    Article  CAS  Google Scholar 

  • Hutter DE, Till BG, Greene JJ (1997) Redox state changes in density-dependent regulation of proliferation. Exp Cell Res 232:435–438

    Article  PubMed  CAS  Google Scholar 

  • Huxtable RJ (1992) Physiological actions of taurine. Physiol Rev 72:101–163

    PubMed  CAS  Google Scholar 

  • Jobgen WS, Fried SK, Fu WJ, Meininger CJ, Wu G (2006) Regulatory role for the arginine-nitric oxide pathway in metabolism of energy substrates. J Nutr Biochem 17:571–588

    Article  PubMed  CAS  Google Scholar 

  • Kanwar S, Wallace JL, Befus D, Kubes P (1994) Nitric oxide synthesis inhibition increases epithelial permeability via mast cells. Am J Physiol 266:G222–G229

    PubMed  CAS  Google Scholar 

  • Le Floc’h N, Sève B (2005) Catabolism through the threonine dehydrogenase pathway does not account for the high first-pass extraction rate of dietary threonine by the portal drained viscera in pigs. Br J Nutr 93:447–456

    Article  PubMed  CAS  Google Scholar 

  • Lee MA, McCauley RD, Kong SE, Hall JC (2002) Influence of glycine on intestinal ischemia-reperfusion injury. J Parenter Enteral Nutr 26:130–135

    Article  CAS  Google Scholar 

  • Li P, Yin YL, Li DF, Kim SW, Wu G (2007) Amino acids and immune function. Br J Nutr 98:237–252

    Article  PubMed  CAS  Google Scholar 

  • Martensson J, Jain A, Meister A (1989) Glutathione is required for intestinal function. Proc Natl Acad Sci USA 87:1715–1719

    Article  Google Scholar 

  • McCafferty DM, Miampamba M, Sihota E, Sharkey KA, Kubes P (1999) Role of inducible nitric oxide synthase in trinitrobenzene sulphonic acid induced colitis in mice. Gut 45:864–873

    Article  PubMed  CAS  Google Scholar 

  • McCafferty DM, Mudgett JS, Swain MG, Kubes P (1997) Inducible nitric oxide synthase plays a critical role in resolving intestinal inflammation. Gatroenterology 112:1022–1027

    Article  CAS  Google Scholar 

  • Meijer AJ (2003) Amino acids as regulators and components of nonproteinogenic pathways. J Nutr 133:2057S–2062S

    PubMed  CAS  Google Scholar 

  • Mueller AR, Platz KP, Heckert C, Häusler M, Radke C, Neuhaus P (1998) L-arginine application improves mucosal structure after small bowel transplantation. Transplant Proc 30:2336–2338

    Article  PubMed  CAS  Google Scholar 

  • Mueller AR, Platz KP, Schirmeier A, Nüssler NC, Seehofer D, Schmitz V, Nüssler AK, Radke C, Neuhaus P (2000) l-arginine application improves graft morphology and mucosal barrier function after small bowel transplantation. Transplant Proc 32:1275–1277

    Article  PubMed  CAS  Google Scholar 

  • Nkabyo YS, Ziegler TR, Gu LH, Watson WH, Jones DP (2002) Glutathione and thioredoxin redox during differentiation in human colon epithelial (Caco-2) cells. Am J Physiol 283:G1352–G1359

    CAS  Google Scholar 

  • Qin HL, Cui HG, Zhang CH, Wu DW, Chu XP (1996) Effects of glutamine on structure and function of gut in endotoxemic rats. China Natl J New Gastroenterol 2:69–72

    Google Scholar 

  • Redmond HP, Stapleton PP, Neary P, Bouchier-Hayes D (1998) Immunonutrition: the role of taurine. Nutrition 14:599–604

    Article  PubMed  CAS  Google Scholar 

  • Reeds PJ, Burrin DG, Jahoor F, Wykes L, Henry J, Frazer EM (1996) Enteral glutamate is almost completely metabolized in first pass by the gastrointestinal tract of infant pigs. Am J Physiol 270:E413–E418

    PubMed  CAS  Google Scholar 

  • Reeds PJ, Burrin DG, Stoll B, Jahoor F, Wykes L, Henry J, Frazer ME (1997) Enteral glutamate is the preferential source for mucosal glutathione synthesis in fed piglets. Am J Physiol 273:E408–E415

    PubMed  CAS  Google Scholar 

  • Rhoads JM, Chen W, Gookin J, Wu GY, Fu Q, Blikslager AT, Rippe RA, Argenzio RA, Cance WG, Weaver EM, Romer LH (2004) Arginine stimulates intestinal cell migration through a focal adhesion kinase dependent mechanism. Gut 53:514–522

    Article  PubMed  CAS  Google Scholar 

  • Rhoads JM, Niu XM, Surendran S, Liu YY, Wu G (2008) Arginine stimulates intestinal epithelial cell migration via a mechanism requiring both nitric oxide and p70s6k signaling. J Nutr (in press)

  • Roig-Pérez S, Guardiola F, Moretó M, Ferrer R (2004) Lipid peroxidation induced by DHA enrichment modifies paracellular permeability in Caco-2 cells: protective role of taurine. J Lipid Res 45:1418–1428

    Article  PubMed  CAS  Google Scholar 

  • Schaart MW, Schierbeek H, van der Schoor SRD, Stoll B, Burrin DG, Reeds PJ, van Goudoever JB (2005) Threonine utilization is high in the intestine of piglets. J Nutr 135:765–770

    PubMed  CAS  Google Scholar 

  • Schleiffer R, Raul F (1996) Prophylactic administration of L-arginine improves the intestinal barrier function after mesenteric ischaemia. Gut 39:194–198

    Article  PubMed  CAS  Google Scholar 

  • Shaw JP, Chou IN (1986) Elevation of extracellular glutathione content associated with mitogenic stimulation of quiescent fibroblast. J Cell Physiol 129:193–198

    Article  PubMed  CAS  Google Scholar 

  • Shoveller AK, Brunton JA, House JD, Pencharz PB, Ball RO (2003) Dietary cysteine reduces the methionine requirement by an equal proportion in both parenterally and enterally fed piglets. J Nutr 133:4215–4224

    PubMed  CAS  Google Scholar 

  • Stoll B, Henry J, Reeds PJ, Yu H, Jahoor F, Burrin DG (1998) Catabolism dominates the first-pass intestinal metabolism of dietary essential amino acids in milk protein-fed piglets. J Nutr 128:606–614

    PubMed  CAS  Google Scholar 

  • Sukhotnik I, Mogilner J, Krausz MM, Lurie M, Hirsh M, Coran AG, Shiloni E (2004) Oral arginine reduces gut mucosal injury caused by lipolysaccharide end toxemia in rat. J Surg Res 122:256–262

    Article  PubMed  CAS  Google Scholar 

  • Thomas S, Prabhu R, Balasubramanian KA (2005) Surgical manipulation of the intestine and distant organ damage-protection by oral glutamine supplementation. Surgery 137:48–55

    Article  PubMed  Google Scholar 

  • Van Goudoever JB, Stoll B, Henry JF, Burrin DG, Reeds PJ (2000) Adaptive regulation of intestinal lysine metabolism. Proc Natl Acad Sci USA 97:11620–11625

    Article  PubMed  Google Scholar 

  • Wang JJ, Chen LX, Li P, Li XL, Zhou HJ, Wang FL, Li DF, Yin YL, Wu G (2008) Gene expression is altered in piglet small intestine by weaning and dietary glutamine supplementation. J Nutr 138:1025–1032

    PubMed  CAS  Google Scholar 

  • Wang X, Qiao SY, Yin YL, Yue LY, Wang ZY, Wu G (2007) A deficiency or excess of dietary threonine reduces protein synthesis in jejunum and skeletal muscle of young pigs. J Nutr 137:1442–1446

    PubMed  CAS  Google Scholar 

  • Wingler K, Muller C, Schmehl K, Florian S, Brigelius-Flohe R (2000) Gastrointestinal glutathione peroxidase prevents transport of lipid hydroperoxides in CaCo-2 cells. Gastroenterology 119:420–430

    Article  PubMed  CAS  Google Scholar 

  • Wu G (1998) Intestinal mucosal amino acid catabolism. J Nutr 128:1249–1252

    PubMed  CAS  Google Scholar 

  • Wu G, Bazer FW, Davis TA, Jaeger LA, Johnson GA, Kim SW, Knabe DA, Meininger CJ, Spencer TE, Yin YL (2007) Important roles for the arginine family of amino acids in swine nutrition and production. Livest Sci 112:8–22

    Article  Google Scholar 

  • Wu G, Fang YZ, Yang S, Lupton JR, Turner ND (2004a) Glutathione metabolism and its implications for health. J Nutr 134:489–492

    PubMed  CAS  Google Scholar 

  • Wu G, Jaeger LA, Bazer FW, Rhoads JM (2004b) Arginine deficiency in premature infants: biochemical mechanisms and nutritional implications. J Nutr Biochem 15:442–451

    Article  PubMed  CAS  Google Scholar 

  • Wu G, Meier SA, Knabe DA (1996) Dietary glutamine supplementation prevents jejunal atrophy in weaned pigs. J Nutr 126:2578–2584

    PubMed  CAS  Google Scholar 

  • Wu GY, Morris SM Jr (1998) Arginine metabolism: nitric oxide and beyond. Biochem J 336:1–17

    PubMed  CAS  Google Scholar 

  • Zhan ZF, Ou DY, Piao XS, Kim SW, Liu YH, Wang JJ (2008) Dietary arginine supplementation affects microvascular development in the small intestine of early-weaned pigs. J Nutr 138:1304–1309

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the National Natural Science Foundation of China for supporting our research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. F. Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, W.W., Qiao, S.Y. & Li, D.F. Amino acids and gut function. Amino Acids 37, 105–110 (2009). https://doi.org/10.1007/s00726-008-0152-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-008-0152-4

Keywords

Navigation