Skip to main content
Log in

The Effects of Cellulose Ethers and Limestone Fillers in Portland Cement-Based Mortars by 1H NMR relaxometry

  • Original Paper
  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

The effect of cellulose ethers (CE) and limestone filler added in nowadays receipts to improve some thermal and hygroscopic properties of construction materials based on plaster mortar were evaluated by 1H 1D nuclear magnetic resonance (NMR) T 2-distributions, distribution of pore size distribution, scanning electron microscopy images and compressive testing. The CE polymer is used in three concentrations of 0.5, 1.0 and 2.0 % from cement mass, and the limestone filler was used into a fixed concentration of 10 % from cement mass. The 1H 1D NMR Carr-Purcell-Meiboom-Gill decays measured for all samples were analyzed by inverse Laplace transform leading to a series of T 2-distributions generally characterized by four peaks associated, from low to high T 2-values, with bound water to cement components, and then with small, medium and large pores. A series of measurements were performed at 28 days after sample preparation, and then the samples were stored for 2 months in water in order for the pores to be saturated and measured again. From the 1H 1D NMR T 2-distributions, into a spherical pores approximation, the distributions of pores sizes were calculated and characterized. For all samples a series of SEM images were recorded with different magnitudes and which, in particular were used to estimate the surface relaxivity factor used in the determination of pores distributions. We estimate the effect of CE polymer and limestone filler on the compression rate which was also correlated with the bound water percentage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. C. Ciobanu, S. Iluc, I. Lazău, C. Păcurariu, Rev. Rom. Mater. 41(1), 30–41 (2011)

    Google Scholar 

  2. Y. Ohama, Cem. Concr. Compos. 20, 189–212 (1998)

    Article  Google Scholar 

  3. K.H. Khayat, Cem. Concr. Compos. 20, 171–188 (1998)

    Article  Google Scholar 

  4. A. Peschard, A. Govin, P. Grosseau, B. Guilhot, R. Guyonnet, Cem. Concr. Res. 34, 2153–2158 (2004)

    Article  Google Scholar 

  5. N.K. Singh, P.C. Mishra, V.K. Singh, K.K. Narang, Cem. Concr. Res. 33, 1319–1329 (2003)

    Article  Google Scholar 

  6. L. Patural, J.-P. Korb, A. Govin, P. Grosseau, Cem. Concr. Res. 42(10), 1371–1378 (2012)

    Article  Google Scholar 

  7. Z.H. Ou, B.G. Ma, S.W. Jian, Constr. Build. Mater. 33, 78–83 (2012)

    Article  Google Scholar 

  8. L.P. Porion, H.V. Damme, A. Govin, P. Grosseau, B. Ruot, O. Devčs, Cem. Concr. Res. 40, 1378–1385 (2010)

    Article  Google Scholar 

  9. E. Knapen, D.V. Gemert, Cem. Concr. Res. 39, 6–13 (2009)

    Article  Google Scholar 

  10. A.M. Betioli, P.J.P. Gleize, D.A. Silva, V.M. John, R.G. Pileggi, Cem. Concr. Res. 39, 440–445 (2009)

    Article  Google Scholar 

  11. J. Pourchez, A. Peschard, P. Grosseau, R. Guyonnet, B. Guilhot, F. Vallee, Cem. Concr. Res. 36, 288–294 (2006)

    Article  Google Scholar 

  12. J. Pourchez, P. Grosseau, R. Guyonnet, B. Ruot, Cem. Concr. Res. 36, 1777–1780 (2006)

    Article  Google Scholar 

  13. D.A. Silva, P.J.M. Monteiro, Cem. Concr. Res. 36, 1501–1507 (2006)

    Article  Google Scholar 

  14. H.J. Weyer, I. Müller, B. Schmitt, D. Bosbach, A. Putnis, Nucl. Instrum. Meth. Phys. Res. Sec. B 238, 102–106 (2005)

    Article  ADS  Google Scholar 

  15. J. Pourchez, P. Grosseau, B. Ruot, Cem. Concr. Res. 40, 179–188 (2010)

    Article  Google Scholar 

  16. J. Pourchez, P. Grosseau, B. Ruot, Cem. Concr. Res. 39, 664–669 (2009)

    Article  Google Scholar 

  17. V. Rahhal, V. Bonavetti, L. Trusilewicz, C. Pedrajas, R. Talero, Constr. Build. Mater. 27, 82–90 (2012)

    Article  Google Scholar 

  18. Q.T. Phung, N. Maes, D. Jacques, E. Bruneel, I. Van Driessche, G. Ye, G. De Schutter, Constr. Build. Mater. 82, 376–390 (2015)

    Article  Google Scholar 

  19. P.F. Faure, S. Caré, J. Magat, T. Chaussadent, Constr. Build. Mater. 29, 496–503 (2012)

    Article  Google Scholar 

  20. E. Jumate, D. Moldovan, R. Fechete, D. Manea, A.I.P. Conf, Proc. 1565, 112–116 (2013)

    Google Scholar 

  21. R. Fechete, D. Moldovan, D.E. Demco, B. Blümich, Diffus. Fundam. 10, 14.1–14.3 (2009)

    Google Scholar 

  22. M. Gussoni, F. Greco, F. Bonazzi, A. Vezzoli, D. Botta, G. Dotelli, I. Natali Sora, R. Pelosato, L. Zetta, Magn. Reson. Imaging 22(6), 877–889 (2004)

    Article  Google Scholar 

  23. S.W. Provencher, Comput. Phys. Commun. 27(3), 213–227 (1982)

    Article  ADS  Google Scholar 

  24. G.C. Borgia, R.J.S. Brown, P. Fantazzini, J. Magn. Reson. 132, 65–77 (1998)

    Article  ADS  Google Scholar 

  25. P.T. Callaghan, Translational Dynamics and Magnetic Resonance—Principles of Pulse Gradient Spin Echo NMR (Oxford University Press, New York, 2011)

  26. L. Venkataramanan, Y.Q. Song, M.D. Hürlimann, IEEE Trans. Signal Process. 50, 1017–1026 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  27. M. Alesiani, I. Piazzoli, B. Maraviglia, Appl. Magn. Reson. 32, 385–394 (2007)

    Article  Google Scholar 

  28. J.P. Korb, C.R. Phys. 11, 192–203 (2010)

    Article  ADS  Google Scholar 

  29. J. Boguszynska, M.C.A. Brown, P.J. McDonald, J. Mitchell, M. Mulheron, J. Tritt-Goc, D.A. Verganelakis, Cem. Concr. Res. 35, 2033–2040 (2005)

    Article  Google Scholar 

  30. J.Y. Jehng, D.T. Sprague, W.P. Halperin, Magn. Reson. Imaging 14, 785–791 (1996)

    Article  Google Scholar 

  31. P. Pipilikaki, M. Beazi-Katsioti, Constr. Build. Mater. 23, 1966–1970 (2009)

    Article  Google Scholar 

  32. S. Mindess, J.F. Young, D. Darwin, Concrete, 2nd edn. (Prentice Hall, Englewood Cliffs, 2002)

    Google Scholar 

  33. (SR)EN998-1, Specification for mortar for masonry—Part 1: rendering and plastering mortar (2011)

  34. M.D. Hürlimann, M. Flaum, L. Venkataramanan, C. Flaum, R. Freedman, G.J. Hirasaki, Magn. Reson. Imag. 21, 305–310 (2003)

    Article  Google Scholar 

  35. D. Moldovan, R. Fechete, D.E. Demco, E. Culea, B. Blümich, V. Herrmann, M. Heinz, Macromol. Chem. Phys. 211, 1579–1594 (2010)

    Article  Google Scholar 

  36. R.A. Horch, J.C. Gore, M.D. Does, Magn. Reson. Med. 66(1), 24–31 (2011)

    Article  Google Scholar 

  37. R.I. Chelcea, R.S. Sipos, R. Fechete, D. Moldovan, I. Sus, Z. Pávai, D.E. Decmo, Sudia UBB Chemia LXI (61), 57–70 (2015)

  38. (SR) EN 1015-11:2002/A1:2007, Methods of test for mortar for masonry. Part 11: Determination of flexural and compressive strength of hardened mortar

  39. G.R. Coates, L. Xiao, M.G. Prammer, NMR Logging Principles and Applications (Halliburton Energy Services Publication H02308, Houston, 1999)

  40. K.E. Washburn, J.E. Birdwell, J. Magn. Reson. 233, 17–28 (2013)

    Article  ADS  Google Scholar 

  41. C. Casieri, F. De Luca, P. Fantazzini, J. Appl. Phys. 97, 043901 (2005)

    Article  ADS  Google Scholar 

  42. J. Mitchell, T.C. Chandrasekera, J. Chem. Phys. 141, 224201 (2014)

    Article  ADS  Google Scholar 

  43. J. Mitchell, T.C. Chandrasekera, L.F. Gladden, J. Chem. Phys. 132, 244705 (2010)

    Article  ADS  Google Scholar 

  44. J. Mitchell, T.C. Chandrasekera, L.F. Gladden, J. Chem. Phys. 139, 074205 (2013)

    Article  ADS  Google Scholar 

  45. F.F. Wang, T.Z. Tang, T.Y. Liu, H.N. Zhang, Appl. Magn. Reson. 47, 361–373 (2016)

    Article  Google Scholar 

  46. A. Ibrahim, E. Mahmoud, M. Yamin, P.V. Chowdary, Constr. Build. Mater. 50, 524–529 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by a Grant of Romanian National Authority for Scientific Research, CNCS and UEFISCDI, Project Number PNII Idea 307/2011.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Radu Fechete.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jumate, E., Moldovan, D., Manea, D.L. et al. The Effects of Cellulose Ethers and Limestone Fillers in Portland Cement-Based Mortars by 1H NMR relaxometry. Appl Magn Reson 47, 1353–1373 (2016). https://doi.org/10.1007/s00723-016-0844-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-016-0844-y

Keywords

Navigation