Skip to main content
Log in

Changes of Nitric Oxide Content in the Rat Hippocampus, Heart and Liver in Acute Phase of Ischemia

  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

Electron paramagnetic resonance (EPR) was used as a method to record nitric oxide (NO) production in the tissues of the brain, heart and liver of healthy rats, and rats after modeling of ischemic stroke. Direct measurement of the dynamics of NO production by EPR spectroscopy in our experiments showed that after the emergence of signs of ischemic stroke, 5 h after the start of ischemia, the content of NO in the hippocampus decreased two- to threefold and this decrease was maintained at 24 and 72 h. Deserving special attention is the data demonstrating that there is a greater decrease of NO production in the tissues of the heart and liver than in the brain. Consequently, the change in intensity of NO production in the modeling of ischemic events in the brain has a systemic, not a local character.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. E.B. Manukhina, I.Y. Malyshev, B.V. Smirin, S.Y. Mashina, V.A. Saltykova, A.F. Vanin, Nitric Oxide 3, 393–401 (1999)

    Article  Google Scholar 

  2. V.B. Koshelev, in Selected Lectures on Modern Physiology (Art-cafe, Kazan, 2010), pp. 178–194 (in Russian)

  3. G.A. Donnan, M. Fisher, M. Macleod, S.M. Davis, Stroke. Lancet 371, 1612–1623 (2008)

    Article  Google Scholar 

  4. S.E. Lakhan, A. Kirchgessner, M. Hofer, J. Transl. Med. 7, 97 (2009)

    Article  Google Scholar 

  5. M. Godinez-Rubi, A.E. Rojas-Mayorquin, D. Ortuno-Sahagun, Oxidat. Med. Cell. Longevity 2013, 1–16 (2013)

    Article  Google Scholar 

  6. K.P. Doyle, R.P. Simon, M.P. Stenzel-Poore, Neurophrmacology 55, 310–318 (2008)

    Article  Google Scholar 

  7. K.L. Lambertsen, K. Biber, B. Finsen, J. Cereb. Blood Flow Metab. 32, 1677–1698 (2012)

    Article  Google Scholar 

  8. A.F. Vanin, Biokhimiya 63, 924–938 (1998) (in Russian)

    Google Scholar 

  9. D. Boehning, S.H. Snyder, Annu. Rev. Neurosci. 26, 105–131 (2003)

    Article  Google Scholar 

  10. I.Y. Malyshev, T.A. Zenina, L.Y. Golubeva, V.A. Saltykova, E.B. Manukhina, V.D. Mikoyan, L.N. Kubrina, A.F. Vanin, Nitric Oxide 3, 105–113 (1999)

    Article  Google Scholar 

  11. P. Pacher, J.S. Beckman, L. Liaudet, Physiol. Rev. 87, 315–427 (2007)

    Article  Google Scholar 

  12. V.P. Reutov, V.E. Okhotin, A.V. Shuklin, E.G. Sorokina, N.S. Kosicin, V.N. Gurin, Usp. Fiziol. Nauk 38, 39–58 (2007) (in Russian)

    Google Scholar 

  13. J.R. Steinert, T. Chernova, I.D. Forsythe, Neuroscientist 16, 435–452 (2010)

    Article  Google Scholar 

  14. A.A. Timoshin, O.I. Pisarenko, O.V. Tskitishvili, L.I. Serebriakova, I.M. Studneva, D. Drobotova, E.K. Ruuge, A.F. Vanin, Biofizika 55, 1099–1107 (2010) (in Russian)

    Google Scholar 

  15. A.F. Vanin, A. Huisman, E.E. Van Faassen, Methods Enzymol. 359, 27–42 (2003)

    Article  Google Scholar 

  16. G.F. Sitdikova, A.L. Zefirov, Ross. Fiziol. Zhurn. im. I. M. Sechenova 92, 872–882 (2006) (in Russian)

    Google Scholar 

  17. G. Tomomi, M. Masataka, Arterioscler. Thromb. Vasc. Biol. 26, 14–39 (2006)

    Google Scholar 

  18. S. Erusalimsky, S. Moncada, Arterioscler. Thromb. Vasc. Biol. 27, 2524–2531 (2007)

    Article  Google Scholar 

  19. R.R. Borodulin, L.N. Kubrina, V.D. Mikoyan, A.P. Poltorakov, V.O. Shvydkiy, D.Sh. Burbaev, V.A. Serezhenkov, E.R. Yakhontova, A.F. Vanin, Nitric Oxide 29, 4–16 (2013)

    Article  Google Scholar 

  20. V. Calabrese, C. Cornelius, E. Rizzarelli, J.B. Owen, A.T. Dinkova-Kostova, D.A. Butterfield, Antioxid. Redox Signal. 11, 2717–2739 (2009)

    Article  Google Scholar 

  21. E.B. Manukhina, I.Y. Malyshev, Ross. Fiziol. Zhurn. im. I. M. Sechenova 86, 1283–1292 (2000) (in Russian)

    Google Scholar 

  22. U. Forstermann, W.C. Sessa, Eur. Heart J. 33, 829–837 (2012)

    Article  Google Scholar 

  23. N.V. Voevodskaya, A.F. Vanin, Biochem. Biophys. Res. Commun. 186, 1423–1428 (1992)

    Article  Google Scholar 

  24. V.V. Khramtsov, L.B. Volodarsky, Biol. Magn. Reson. 14, 109–180 (1998)

    Article  Google Scholar 

  25. D.D. Thomas, L.A. Ridnour, J.S. Isenberg, W. Flores-Santana, C.H. Switzer, S. Donzelli, P. Hussain, C. Vecoli, N. Paolocci, S. Ambs, C.A. Colton, C.C. Harris, D.D. Roberts, D.A. Wink, Free Radical Biol. Med. 45, 18–31 (2008)

    Article  Google Scholar 

  26. C. Csonka, T. Pali, P. Bencsik, A. Gorbe, P. Ferdinandy, T. Csont, Brit. J. Pharmacol. 172, 1620–1632 (2015)

    Article  Google Scholar 

  27. C. Iadecola, F. Zhang, R. Casey, M. Nagayama, M.E. Ross, J. Neurosci. 17, 9157–9164 (1997)

    Google Scholar 

  28. A.F. Samdani, T.M. Dawson, V.L. Dawson, Stroke 28, 1283–1288 (1997)

    Article  Google Scholar 

  29. S. Griveau, F. Bedioui, Analyt. Bioanalyt. Chem. 405, 3475–3488 (2013)

    Article  Google Scholar 

  30. H.X. Zhang, J.B. Chen, X.F. Guo, H. Wang, H.S. Zhang, Analyt. Chem. 86, 3115–3123 (2014)

    Article  Google Scholar 

  31. C.C. Winterbourn, Biochim. Biophys. Acta 1840, 730–738 (2014)

    Article  Google Scholar 

  32. V.V. Zinchuk, Usp. Fiziol. Nauk 34, 33–35 (2003) (in Russian)

    Google Scholar 

  33. L.N. Kubrina, W.S. Caldwell, P.I. Mordvintcev, I.V. Malenkova, A.F. Vanin, Biochim. Biophys. Acta 1099, 233–237 (1992)

    Article  Google Scholar 

  34. A. Mulsch, P.I. Mordvintcev, A.F. Vanin, R. Busse, Biochem. Biophys. Res. Commun. 196, 1303–1308 (1993)

    Article  Google Scholar 

  35. P. Kleschyov, T. Wenzel, J. Munzel, Chromatogr. B 851, 12–20 (2007)

    Article  Google Scholar 

  36. N. Hogg, Free Radical Biol. Med. 49, 122–129 (2010)

    Article  Google Scholar 

  37. C.L. Hawkins, M.J. Davies, Biochim. Biophys. Acta 1840, 708–721 (2014)

    Article  Google Scholar 

  38. A.F. Vanin, P.I. Mordvintcev, A.L. Kleschyov, Studia Biophys. 102, 135–143 (1984)

    Google Scholar 

  39. J.P. Bolanos, A. Almeida, Biochim. Biophys. Acta 1411, 415–436 (1999)

    Article  Google Scholar 

  40. S. Sato, T. Tominaga, T. Ohnishi, S.T. Ohnishi, Brain Res. 647, 91–96 (1994)

    Article  Google Scholar 

  41. T. Tominaga, S. Sato, T. Ohnishi, S.T. Ohnishi, J. Cereb. Blood Flow Metab. 14, 715–722 (1994)

    Article  Google Scholar 

  42. S.H. Chen, P.C. Fung, R.T. Cheung, Free Radical Biol. Med. 32, 776–784 (2002)

    Article  Google Scholar 

  43. Z. Yuan, W. Liu, B. Liu, A. Schnell, K.J. Liu, Brain Res. 1352, 248–254 (2010)

    Article  Google Scholar 

  44. O.E. Fadiukova, A.A. Alekseev, V.G. Bashkatova, I.A. Tolordava, V.S. Kuzenkov, V.D. Mikoian, A.F. Vanin, V.B. Koshelev, K.S. Raevskiĭ, Eksper. Klinic. Farmakol. 64, 31–34 (2001)

    Google Scholar 

  45. D.A. Dawson, K. Kusumoto, D.I. Graham, J. McCulloch, I.M. Macrae, Neurosci. Lett. 142, 151–154 (1992)

    Article  Google Scholar 

  46. G. Sancesario, M. Iannone, M. Morello, G. Nistico, G. Bernardi, Stroke 25, 436–443 (1994)

    Article  Google Scholar 

  47. S. Yamamoto, E.V. Golanov, S.B. Berger, D.J. Reis, J. Cereb. Blood Flow Metab. 12, 717–726 (1992)

    Article  Google Scholar 

  48. M. Willmot, L. Gray, C. Gibson, S. Murphy, P.M. Bath, Nitric Oxide 12, 141–149 (2005)

    Article  Google Scholar 

  49. K.H. Jung, K. Chu, S.Y. Ko, S.T. Lee, D.I. Sinn, D.K. Park, J.M. Kim, E.C. Song, M. Kim, J.K. Roh, Stroke 37, 2744–2750 (2006)

    Article  Google Scholar 

  50. O.V. Evgenov, P. Pacher, P.M. Schmidt, G. Haskó, H.H.H.W. Schmidt, J.-P. Stasch, Nat. Rev. Drug Discov. 5, 755–768 (2006)

    Article  Google Scholar 

  51. KhL Gainutdinov, S.A. Gavrilova, V.S. Iyudin, A.V. Golubeva, M.P. Davydova, G.G. Jafarova, V.V. Andrianov, V.B. Koshelev, Appl. Magn. Reson. 40, 267–278 (2011)

    Article  Google Scholar 

  52. N.A. Terpolilli, M.A. Moskowitz, N. Plesnila, J. Cereb. Blood Flow Metab. 32, 1332–1346 (2012)

    Article  Google Scholar 

  53. V. Calabrese, C. Mancuso, M. Calvani, E. Rizzarelli, D.A. Butterfield, A.M.G. Stella, Nat. Rev. Neurosci. 8, 767–775 (2007)

    Article  Google Scholar 

  54. M. Coupe, E. Tomilovskaya, F. Larcher, B. Diquet, L.K. Pastushkova, I.B. Kozlovskaya, I.M. Larina, G. Gauquelin-Koch, V.A. Kulchitsky, M.-A. Custaud, N.M. Navasiolava, Open J. Nephrol. 3, 13–24 (2013)

    Article  Google Scholar 

  55. V. Kulchitsky, T. Semenik, Z. Kaliadzich, T. Andrianova, K. Tsishkevich, Clin. Neurophysiol. 125, 330–331 (2014)

    Article  Google Scholar 

  56. V.D. Mikoyan, L.N. Kubrina, V.A. Serezhenkov, R.A. Stukan, A.F. Vanin, Biochim. Biophys. Acta 1336, 225–234 (1997)

    Article  Google Scholar 

  57. A.I. Ismailova, O.I. Gnezdilov, L.N. Muranova, A.A. Obynochny, V.V. Andrianov, KhL Gainutdinov, A.G. Nasyrova, R.R. Nigmatullina, F.F. Rahmatullina, A.L. Zefirov, Appl. Magn. Reson. 28, 421–430 (2005)

    Article  Google Scholar 

  58. KhL Gainutdinov, V.V. Andrianov, V.S. Iyudin, S.V. Yurtaeva, G.G. Jafarova, R.I. Faisullina, F.G. Sitdikov, Biophysics 58, 203–205 (2013)

    Article  Google Scholar 

  59. V.V. Andrianov, F.G. Sitdikov, KhL Gainutdinov, S.V. Yurtaeva, L.N. Muranova, A.A. Obynochnyi, F.K. Karimov, V.M. Chiglintsev, V.S. Iyudin, Russ. J. Dev. Biol. 38, 352–356 (2008)

    Article  Google Scholar 

  60. E.I. Gusev, V.I. Skvorceva, Ishemia of Brain (Medicina, Moscow, 2001) (in Russian)

  61. L.X. Liu, Y.J. Yang, Y.J. Jia, Hunan Yike Daxue Xuebao 28, 133–136 (2003)

    Google Scholar 

  62. C. Griffiths, G. Garthwaite, D.A. Goodwin, J. Garthwaite, Eur. J. Neurosci. 15, 962–968 (2002)

    Article  Google Scholar 

  63. E.B. Manukhina, V.U. Kalenchuk, S.A. Gavrilova, A.V. Goryacheva, I.Y. Malyshev, V.B. Koshelev, Ross. Fiziol. Zhurn. im. I. M. Sechenova 94, 198–205 (2008) (in Russian)

    Google Scholar 

  64. N. Tuteja, M. Chandra, R. Tuteja, M.K. Misra, J. Biomed. Biotechnol. 4, 227–237 (2004)

    Article  Google Scholar 

  65. S. Cho, E.-M. Park, P. Zhou, K. Frys, M.E. Ross, C. Iadecola, J. Cereb. Blood Flow Metab. 25, 493–501 (2005)

    Article  Google Scholar 

  66. V.V. Andrianov, G.G. Iafarova, A.A. Denisov, V.S. Iyudin, S.G. Pashkevich, M.O. Khotyanovich, T.Kh. Bogodvid, V.A. Kulchitchkii, Kh.L. Gainutdinov, in Proceedings of the Internat. conf. “Magnetic Resonance: Fundamental Research and Pioneering Applications (MR-70)”, Kazan. P05. 88 (2014)

Download references

Acknowledgments

This work was funded by the subsidy of the Russian Government to support the Program of Competitive Growth of Kazan Federal University among the World’s Leading Academic Centers (Agreement No. 02.A03.21.0002), by Russian Foundation for Basic Research (Grant No. 16-54-00098) and by Belarusian Republican Foundation for Fundamental Research (Grant B16R-166).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kh. L. Gainutdinov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andrianov, V.V., Pashkevich, S.G., Yafarova, G.G. et al. Changes of Nitric Oxide Content in the Rat Hippocampus, Heart and Liver in Acute Phase of Ischemia. Appl Magn Reson 47, 965–976 (2016). https://doi.org/10.1007/s00723-016-0815-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-016-0815-3

Keywords

Navigation