Skip to main content
Log in

Zinc–Nickel Ferrite Nanoparticles as a Contrast Agent in Magnetic Resonance Imaging

  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

Today, contrast agents are used to improve the sensitivity of magnetic resonance imaging (MRI) to detect pathologic structures. Ferrite nanoparticles are a class of superparamagnetic contrast agents in MRI. In this study, Zn0.5Ni0.5Fe2O4 nanoparticles were synthesized via precipitation method and coated with dextrin to increase the solubility and biocompatibility. The morphology, size, structure, and magnetic properties of nanoparticles were investigated. These nanoparticles have superparamagnetic property with a narrow size distribution with a mean diameter of about 20.5 ± 3.2 nm. MRI study using phantom agar shows that these nanoparticles can be used as an effective contrast agent for T 2 and \(T_{2}^{*}\)-weighted imaging. The relaxivities of r 2 and \(r_{2}^{*}\) are 8.78 and 82.08 s−1 mmol L−1, respectively. From these findings, it is possible that dextrin-coated Zn0.5Ni0.5Fe2O4 nanoparticles can be used as a good negative contrast agent in MRI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. A. Ito, M. Shinkai, H. Honda, T. Kobayashi, J. Biosci. Bioeng. 100, 1–11 (2005)

    Article  Google Scholar 

  2. Z. Liu, T. Lammers, J. Ehling, Z. Liua, T. Lammersa, J. Ehlinga, S. Fokonga, J. Bornemannc, F. Kiesslinga, J. Gatjensa, Biomaterials 32, 6155–6163 (2011)

    Article  Google Scholar 

  3. H.L. Ma, Y.F. Xu, X.R. Qi, Y. Maitani, T. Nagai, Int. J. Pharm. 354, 217–226 (2008)

    Article  Google Scholar 

  4. S. Sun, C.B. Murray, D. Weller, L. Folks, A. Moser, Science 287, 1989–1992 (2000)

    Article  ADS  Google Scholar 

  5. N. Sattarahmady, A. Parsa, H. Heli, J. Mater. Sci. 48, 2346–2351 (2013)

    Article  ADS  Google Scholar 

  6. H. Heli, H. Yadegari, A. Jabbari, J. Phys. Chem. 115C, 10889–10897 (2011)

    Google Scholar 

  7. A. Rahi, K. Karimian, H. Heli, Anal. Biochem. 497, 39–47 (2016)

    Article  Google Scholar 

  8. A. Rahi, N. Sattarahmady, H. Heli, Sci. Rep. 5, Article number 18060 (2015)

  9. A. Rahi, N. Sattarahmady, H. Heli, Talanta 156–157, 218–224 (2016)

    Article  Google Scholar 

  10. N. Sattarahmady, H. Heli, R. Dehdari Vais, Biosens. Bioelectron. 48, 197–202 (2013)

    Article  Google Scholar 

  11. N. Sattarahmady, G.H. Tondro, M. Golchin, H. Heli, Biochem. Eng. J. 97, 1–7 (2015)

    Article  Google Scholar 

  12. H. Heli, S. Mirtorabi, K. Karimian, Expert Opin. Ther. Pat. 21, 819–856 (2011)

    Article  Google Scholar 

  13. P. Boisseau, B. Loubaton, C. R. Phys. 12, 620–636 (2011)

    Article  ADS  Google Scholar 

  14. R. Lehner, X. Wang, M. Wolf, P. Hunziker, J. Control Release 161, 307–316 (2012)

    Article  Google Scholar 

  15. A.A.M. Elsherbini, M. Saber, M. Aggag, A. El-Shahawy, H.A. Shokier, Magn. Reson. Imaging 29, 272–280 (2011)

    Article  Google Scholar 

  16. H. Heli, N. Sattarahmady, G.R. Hatam, F. Reisi, R. Dehdari Vais, Talanta 156–157, 172–179 (2016)

    Article  Google Scholar 

  17. T.H. Hai, L.H. Phuc, D.T.K. Dung, N.T.L. Huyen, B.D. Long, L.K. Vinh, N.T.T. Kieu, M. Abe, J. Korean Phys. Soc. 53, 772–775 (2008)

    Article  ADS  Google Scholar 

  18. M.D. Shultza, S. Calvin, P.P. Fatouros, S.A. Morrison, E.E. Carpenter, J. Magn. Magn. Mater. 311, 464–468 (2007)

    Article  ADS  Google Scholar 

  19. D. Pan, S.D. Caruthers, A. Senpan, A.H. Schmieder, S.A. Wickline, G.M. Lanza, Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 3, 162–173 (2011)

    Article  Google Scholar 

  20. G.P. Yan, L. Robinson, P. Hogg, Radiography 13, 5–19 (2007)

    Article  Google Scholar 

  21. D.Y. Lee, Macromol. Res. 19, 843–847 (2011)

    Article  Google Scholar 

  22. H.B. Na, I.C. Song, T. Hyeon, Adv. Mater. 21, 2133–2148 (2009)

    Article  Google Scholar 

  23. I. Raynal, P. Prigent, S. Peyramaure, A. Najid, C. Rebuzzi, C. Corot, Invest. Radiol. 39, 56–63 (2004)

    Article  Google Scholar 

  24. K. Niemirowicz, K.H. Markiewicz, A.Z. Wilczewska, H. Car, Adv. Med. Sci. 57, 196–207 (2012)

    Article  Google Scholar 

  25. D. Portet, B. Denizot, E. Rump, J.J. Lejeunea, P. Jallet, J. Colloid Interface Sci. 238, 37–42 (2001)

    Article  Google Scholar 

  26. C. Sciallero, D. Grishenkov, S.V. Kothapalli, L. Oddo, A. Trucco, J. Acoust. Soc. Am. 134, 3918–3930 (2013)

    Article  ADS  Google Scholar 

  27. D.K. Kim, Y. Zhang, J. Kehr, T. Klason, B. Bjelke, M. Muhammed, J. Magn. Magn. Mater. 225, 256–261 (2001)

    Article  ADS  Google Scholar 

  28. L. Wei, S. Li, J. Yang, Y. Ye, J. Zou, L. Wang, R. Long, O. Zurkiya, T. Zhao, J. Johnson, J. Qiao, W. Zhou, A. Castiblanco, N. Maor, Y. Chen, H. Mao, X. Hu, J.J. Yang, Z.R. Liu, Mol. Imaging Biol. 13, 416–423 (2011)

    Article  Google Scholar 

  29. A.P. Marques, R.L. Reis, J.A. Hunt, Biomaterials 23, 1471–1478 (2002)

    Article  Google Scholar 

  30. W.H. Wong, D.J. Mooney, in: Synthetic Biodegradable Polymer Scaffolds (Birkhauser, Boston, 1997), pp. 51–82

    Book  Google Scholar 

  31. Q. Xu, Y. Wei, Y. Liu, X. Jia, L. Yanga, M. Gu, Solid State Sci. 11, 472–478 (2009)

    Article  ADS  Google Scholar 

  32. J.G. Lee, J.H. Kim, K.P. Chae, J. Korean Phys. Soc. 49, 604–607 (2006)

    Google Scholar 

  33. M. Ahamed, M.J. Akhtar, M.A. Siddiqui, J. Ahmad, J. Musarrat, A.A. Al-Khedhairy, M.S. AlSalhi, S.A. Alrokayan, Toxicology 283, 101–108 (2010)

    Article  Google Scholar 

  34. B. Godbole, N. Badera, S.B. Shrivastava, D. Jaind, L.S.S. Chandrae, V. Ganesanf, Phys. Proc. 49, 58–66 (2013)

    Article  ADS  Google Scholar 

  35. P.P. Hankare, R.P. Patil, U.B. Sankpal, S.D. Jadhava, P.D. Lokhandeb, K.M. Jadhavc, R. Sasikalad, J. Solid State Chem. 182, 3217–3221 (2009)

    Article  ADS  Google Scholar 

  36. P. Chandrasekharan, D. Maity, C.X. Yong, K.H. Chuang, J. Ding, S.S. Feng, Biomaterials 32, 5663–5672 (2011)

    Article  Google Scholar 

  37. J.M. Jin, Electromagnetic analysis and Design in Magnetic Resonance Imaging (CRC Press, Boca Raton, 1998)

    Google Scholar 

  38. D. Maity, D.C. Agarwal, J. Magn. Magn. Mater. 308, 46–55 (2007)

    Article  ADS  Google Scholar 

  39. J. Varshosaz, H. Sadeghi-aliabadi, S. Ghasemi, B. Behdadfar, Biomed. Res. Int. 2013, 680712 (2013)

    Google Scholar 

Download references

Acknowledgments

We thank the Research Councils of Shiraz University of Medical Sciences (10064), and the Iran National Science Foundation (INSF) for supporting this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Heli.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sattarahmady, N., Heidari, M., Zare, T. et al. Zinc–Nickel Ferrite Nanoparticles as a Contrast Agent in Magnetic Resonance Imaging. Appl Magn Reson 47, 925–935 (2016). https://doi.org/10.1007/s00723-016-0801-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-016-0801-9

Keywords

Navigation