Skip to main content
Log in

Möbius–Hückel Topology Switching in Expanded Porphyrins: EPR, ENDOR, and DFT Studies of Doublet and Triplet Open-Shell Systems

  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

The one-sided Möbius band topology with its characteristic 180° twist has fascinated and inspired philosophers, artists and scientists since a long time. On the molecular level, only in the last 13 years a few chemistry groups succeeded to artificially create novel compounds with Möbius symmetry by theory-based molecular design and elaborate chemical synthesis. The interest in molecules with Möbius band symmetry was greatly stimulated in 1964 by a theoretical paper by Edgar Heilbronner from the ETH Zurich. He predicted that sufficiently large [n]annulenes with a closed-shell electron configuration of 4n π-electrons should allow for sufficient π-overlap stabilization to be synthesizable by twisting them into the Möbius topology of their hydrocarbon skeleton. In 2003, the first synthesis of an aromatic Möbius annulene was accomplished by Rainer Herges and co-workers in Kiel. In 2007, Lechosław Latos-Grażyński and co-workers in Wroclaw succeeded in synthesizing free-base di-p-benzi (Yoneda et al., Angew Chem Int Ed 53: 13169–13173, 2014) hexaphyrin (1.1.1.1.1.1), compound 1, an expanded porphyrin which can dynamically switch between Hückel and Möbius conjugation upon changes of solvent and temperature. Shortly thereafter, in 2008, Atsuhiro Osuka and his co-workers from Kyoto, Seoul and Hyogo published the synthesis of an expanded porphyrin in which metalation triggered the production of molecular twisting and Möbius aromaticity. In this minireview, among other studies also our recent EPR, ENDOR and DFT studies on open-shell states of 1, i.e., on the ground-state radical cation doublet state (total electron spin S = 1/2) and the first excited triplet state (S = 1) are summarized. The review is largely based on a previous joint publication of the current authors with the Latos-Grażyński group on radical cations of 1 (Möbius et al., Phys Chem Chem Phys 17:6644–6652, 2015). The radical cation study was the first one of an open-shell π-system with Möbius topology. In the doublet state, the hyperfine interactions of the unpaired electron spin with specific magnetic nuclei in the molecule was used as a sensitive probe for the electronic structure of the molecule and its symmetry properties. This work has now been extended to state-of-the-art DFT theory studies on photo-excited triplet states of 1. In the open-shell triplet state, besides hyperfine couplings, a change of the zero-field splitting interaction between the two unpaired electron spins is predicted to be a viable sensor for electronic structure changes upon Möbius-to-Hückel topology switching.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Scheme 1
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. K. Möbius, M. Plato, G. Klihm, C. Laurich, A. Savitsky, W. Lubitz, B. Szyszko, M. Stępień, L. Latos-Grażyński, Phys. Chem. Chem. Phys. 17, 6644–6652 (2015)

    Article  Google Scholar 

  2. A.F. Möbius, Berichte über die Verhandlungen der Königlich Sächsischen Gesellschaft der Wissenschaften zu Leipzig; Sitzung am 27. November 1865, vol 11, pp. 31–68 (1865)

  3. J.B. Listing, Abhandlungen der Mathematischen Classe der Königlichen Gesellschaft der Wissenschaften zu Göttingen; vorgetragen am 7. Dez. 1861, vol 10, pp. 97–182 (1861)

  4. C.A. Pickover, The Möbius Strip: Dr. August Möbius’s Marvellous Band in Mathematics, Games, Literature, Art, Technology, and Cosmology (Basic Books, New York, 2006)

  5. R. Herges, Naturwiss. Rundschau 58, 301–310 (2005)

    Google Scholar 

  6. R. Herges, Chem. Rev. 106, 4820–4842 (2006)

    Article  Google Scholar 

  7. G.R. Schaller, R. Herges, Chem. Commun. 49, 1254–1260 (2013)

    Article  Google Scholar 

  8. E. Heilbronner, Tetrahedron Lett. 29, 1923–1928 (1964)

    Article  Google Scholar 

  9. M. Stępień, B. Szyszko, L. Latos-Grażyński, J. Am. Chem. Soc. 132, 3140–3152 (2010)

    Article  Google Scholar 

  10. M. Stępień, N. Sprutta, L. Latos-Grażyński, Angew. Chem. Int. Ed. 50, 4288–4340 (2011)

    Article  Google Scholar 

  11. Y. Tanaka, S. Saito, S. Mori, N. Aratani, H. Shinokubo, N. Shibata, Y. Higuchi, Z.S. Yoon, K.S. Kim, S.B. Noh, J.K. Park, D. Kim, A. Osuka, Angew. Chem. Int. Ed. 47, 681–684 (2008)

    Article  Google Scholar 

  12. J.M. Lim, J.-Y. Shin, Y. Tanaka, S. Saito, A. Osuka, D. Kim, J. Am. Chem. Soc. 132, 3105–3114 (2010)

    Article  Google Scholar 

  13. B. Szyszko, L. Latos-Grażyński, L. Szterenberg, Angew. Chem. Int. Ed. 50, 6587–6591 (2011)

    Article  Google Scholar 

  14. C.-W. Chang, M. Liu, S. Nam, S. Zhang, Y. Liu, G. Bartal, X. Zhang, Phys. Rev. Lett. 105, 235501-1–235501-4 (2010)

  15. E. W. Weisstein, http://mathworld.wolfram.com/MoebiusStrip.html. Accessed 1 July 2015

  16. http://www.youtube.com/watch?v=xUHQ2ybTejU. Accessed 1 July 2015

  17. M. Stępień, L. Latos-Grażyński, N. Sprutta, P. Chwalisz, L. Szterenberg, Angew. Chem. Int. Ed. 46, 7869–7873 (2007)

    Article  Google Scholar 

  18. E. Hückel, Z. Physik. 70, 204–286 (1931)

    Article  ADS  Google Scholar 

  19. E. Hückel, Z. Physik. 76, 628–648 (1932)

    Article  ADS  Google Scholar 

  20. E. Hückel, Grundzüge der Theorie Ungesättiger und aromatischer Verbindungen (VCH, Berlin, 1938)

    Google Scholar 

  21. H.E. Zimmerman, J. Am. Chem. Soc. 88, 1564–1565 (1966)

    Article  Google Scholar 

  22. T. Kawase, M. Oda, Angew. Chem. Int. Ed. 43, 4396–4398 (2004)

    Article  Google Scholar 

  23. Z.S. Yoon, A. Osuka, D. Kim, Nat. Chem. 1, 113–122 (2009)

    Article  Google Scholar 

  24. D. Ajami, O. Oeckler, A. Simon, R. Herges, Nature 426, 819–821 (2003)

    Article  ADS  Google Scholar 

  25. D. Ajami, K. Hess, F. Koehler, C. Nather, O. Oeckler, A. Simon, C. Yamamoto, Y. Okamoto, R. Herges, Chem. Eur. J. 12, 5434–5445 (2006)

    Article  Google Scholar 

  26. K. Moriya, T. Yoneda, S. Saito, A. Osuka, Chem. Lett. 40, 455–457 (2011)

    Article  Google Scholar 

  27. K.S. Kim, Z.S. Yoon, A.B. Ricks, J.-Y. Shin, S. Mori, J. Sankar, S. Saito, Y.M. Jung, M.R. Wasielewski, A. Osuka, D. Kim, J. Phys. Chem. A 113, 4498–4506 (2009)

    Article  Google Scholar 

  28. T. Yoneda, Y.M. Sung, J.M. Lim, D. Kim, A. Osuka, Angew. Chem. Int. Ed. 53, 13169–13173 (2014)

    Article  Google Scholar 

  29. E. Vogel, Pure Appl. Chem. 68, 1355–1360 (1996)

    Google Scholar 

  30. E. Vogel, M. Broring, S.J. Weghorn, P. Scholz, R. Deponte, J. Lex, H. Schmickler, K. Schaffner, S.E. Braslavsky, M. Muller, S. Porting, C.J. Fowler, J.L. Sessler, Angew. Chem. Int. Ed. 36, 1651–1654 (1997)

    Article  Google Scholar 

  31. J.L. Sessler, S.J. Weghorn, V. Lynch, M.R. Johnson, Angew. Chem. Int. Ed. 33, 1509–1512 (1994)

    Article  Google Scholar 

  32. J.S. Sessler, S.J. Weghorn, Expanded, Contracted, and Isomeric Porphyrins (Elsevier, Amsterdam, 1997)

    Google Scholar 

  33. T.K. Ahn, J.H. Kwon, D.Y. Kim, D.W. Cho, D.H. Jeong, S.K. Kim, M. Suzuki, S. Shimizu, A. Osuka, D. Kim, J. Am. Chem. Soc. 127, 12856–12861 (2005)

    Article  Google Scholar 

  34. M.-C. Yoon, P. Kim, H. Yoo, S. Shimizu, T. Koide, S. Tokuji, S. Saito, A. Osuka, D. Kim, J. Phys. Chem. B. 115, 14928–14937 (2011)

    Article  Google Scholar 

  35. M. Torrent-Sucarrat, J.M. Anglada, J.M. Luis, J. Chem. Phys. 137, 184306-1–184306-9 (2012)

  36. C. Castro, C.M. Isborn, W.L. Karney, M. Mauksch, P.V. Schleyer, Org. Lett. 4, 3431–3434 (2002)

    Article  Google Scholar 

  37. H.S. Rzepa, Chem. Rev. 105, 3697–3715 (2005)

    Article  Google Scholar 

  38. G. Bucher, S. Grimme, R. Huenerbein, A.A. Auer, E. Mucke, F. Koehler, J. Siegwarth, R. Herges, Angew. Chem. Int. Ed. 48, 9971–9974 (2009)

    Article  Google Scholar 

  39. E.-K. Mucke, F. Koehler, R. Herges, Org. Lett. 12, 1708–1711 (2010)

    Article  Google Scholar 

  40. M. Alonso, P. Geerlings, F. de Proft, Chem. Eur. J. 18, 10916–10928 (2012)

    Article  Google Scholar 

  41. F. Neese, WIREs Comput. Mol. Sci. 2, 73–78 (2012)

    Article  Google Scholar 

  42. K. Möbius, M. Plato, W. Lubitz, Phys. Rep. 87, 171–208 (1982)

    Article  ADS  Google Scholar 

  43. M. Stępień, B. Szyszko, L. Latos-Grażyński, Org. Lett. 11, 3930–3933 (2009)

    Article  Google Scholar 

  44. B. Szyszko, N. Sprutta, P. Chwalisz, M. Stępień, L. Latos-Grażyński, Chem. Eur. J. 20, 1985–1997 (2014)

    Article  Google Scholar 

  45. H. Käss, J. Rautter, W. Zweygart, A. Struck, H. Scheer, W. Lubitz, J. Phys. Chem. 98, 354–363 (1994)

    Article  Google Scholar 

  46. W. Zweygart, R. Thanner, W. Lubitz, J. Magn. Reson. 109, 172–176 (1994)

    Article  ADS  Google Scholar 

  47. K. Möbius, R. Biehl, in Mulitiple Electron Resonance Spectroscopy, ed. by M.M. Dorio, J.H. Freed (Plenum, New York, 1979), pp. 475–507

  48. W. Lubitz, R.A. Isaacson, E.C. Abresch, G. Feher, Proc. Natl. Acad. Sci. USA 81, 7792–7796 (1984)

    Article  ADS  Google Scholar 

  49. A. Carrington, A.D. McLachlan, Introduction to Magnetic Resonance (Harper and Row, New York, 1969)

    Google Scholar 

  50. R.G. Parr, W. Yang, Density-Functional Theory of Atoms and Molecules (Oxford University Press, Oxford, 1989)

    Google Scholar 

  51. W. Koch, M.C. Holthausen, A Chemist’s Guide to Density Functional Theory (Wiley-VCH, Weinheim, 2000)

    Google Scholar 

  52. R. Ditchfield, W.J. Hehre, J.A. Pople, J. Chem. Phys. 54, 724–1000 (1971)

    Article  ADS  Google Scholar 

  53. F. Weigend, R. Ahlrichs, Phys. Chem. Chem. Phys. 7, 3297–3305 (2005)

    Article  Google Scholar 

  54. A. Klamt, G. Schüürmann, J. Chem. Soc. Perkin Trans. 2, 799–805 (1993)

  55. N.M. Atherton, Principles of Electron Spin Resonance (Ellis Horwood, New York, 1993)

    Google Scholar 

  56. T. O’Have, http://terpconnect.umd.edu/~toh/spectrum/TOC.html Accessed 1 July 2015

  57. M.N. Khan, C. Palivan, F. Barbosa, J. Amaudrut, G. Gescheidt, J. Chem. Soc. Perkin Trans. 2, 1522–1526 (2001)

  58. A.D. Becke, J. Chem. Phys. 98, 5648–5652 (1993)

    Article  ADS  Google Scholar 

  59. S. Sinnecker, F. Neese, J. Phys. Chem. A 110, 12267–12275 (2006)

    Article  Google Scholar 

  60. G.R. Eaton, S.S. Eaton, D.P. Barr, R.T. Weber, Quantitative EPR (Springer, New York, 2010)

    Book  Google Scholar 

  61. H. Kurreck, B. Kirste, W. Lubitz, Electron Nuclear Double Resonance Spectroscopy of Radicals in Solution (VCH Publishers, New York, 1988)

    Google Scholar 

  62. S.D. Chemerisov, O.Y. Grinberg, D.S. Tipikin, Y.S. Lebedev, H. Kurreck, K. Möbius, Chem. Phys. Lett. 218, 353–361 (1994)

    Article  ADS  Google Scholar 

  63. K. Möbius, A. Savitsky, High-Field EPR Spectroscopy on Proteins and Their Model Systems: Characterization of Transient Paramagnetic States (RSC Publishing, London, 2009)

    Google Scholar 

  64. C.W.M. Kay, M. Di Valentin, K. Möbius, J. Chem. Soc. Perkin Trans. 2, 2563–2568 (1997)

    Article  Google Scholar 

  65. C.E. Tait, P. Neuhaus, H.L. Anderson, C.R. Timmel, J. Am. Chem. Soc. 137, 6670–6679 (2015)

    Article  Google Scholar 

  66. Z. Sun, J. Wu, J. Mater. Chem. 22, 4151–4160 (2012)

    Article  ADS  Google Scholar 

  67. Z. Sun, Z. Zeng, J. Wu, Chem. Asian J. 8, 2894–2904 (2013)

    Article  Google Scholar 

  68. W. Zeng, S. Lee, M. Son, M. Ishida, K. Furukawa, P. Hu, Z. Sun, D. Kim, J. Wu, Chem. Sci. 6, 2427–2433 (2015)

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge with gratitude the scientific cooperation with Lechosław Latos-Grażyński and his coworkers Marcin Stępień and Bartosz Szyszko at the University of Wroclaw who kindly provided the di-p-benzi [28]hexaphyrin (1.1.1.1.1.1) compound. We express our thanks to Rolf Trinoga, IT Group Leader at the MPI for Chemical Energy Conversion (CEC) in Mülheim (Ruhr), for his assistance in our ORCA-DFT calculations on the CEC Hermes computer cluster. We thank Gudrun Klihm and Christoph Laurich (CEC) for their essential contributions to the ENDOR experiments and sample preparations as well as Michal Zalibera (CEC) who is involved in the on-going triplet-state EPR experiments. We gratefully acknowledge support by the Max Planck Society and Free University Berlin. This work was additionally supported by the Excellence Cluster RESOLV (EXC 1069) funded by the Deutsche Forschungsgemeinschaft.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Klaus Möbius or Anton Savitsky.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Möbius, K., Savitsky, A., Lubitz, W. et al. Möbius–Hückel Topology Switching in Expanded Porphyrins: EPR, ENDOR, and DFT Studies of Doublet and Triplet Open-Shell Systems. Appl Magn Reson 47, 757–780 (2016). https://doi.org/10.1007/s00723-016-0789-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-016-0789-1

Keywords

Navigation