Skip to main content
Log in

Probing Flocculant-Induced Asphaltene Precipitation via NMR Imaging: from Model Toluene-Asphaltene Systems to Natural Crude Oils

  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

An nuclear magnetic resonance (NMR) imaging approach for studying flocculant-induced asphaltene precipitation processes is introduced in this report. Unlike commonly accepted techniques, which primarily measure aggregation processes on the submicron scale (the level of asphaltene molecules and their aggregates), NMR imaging demonstrates the capability to obtain new useful information about bulk system behavior on the macro scale. To reveal the capabilities of the method, the model toluene-asphaltene system and two samples of natural crude oils with different chemical composition and physical properties (such as asphaltene content and density) were employed for experiments. The process of colloidal suspension formation and two different patterns of its evolution were observed depending on both the asphaltene content and the flocculant concentration. In the first pattern, the flocculant-induced precipitation leads to the slow uniform compacting of the suspension and descent of the sedimentation front, whereas the second pattern is characterized by sediment accumulation and the upwards drift of the front. It was found that the behavior of the precipitated asphaltenes in the model system correlates well with those observed in natural crude oils. The results achieved in this work are in agreement with the data obtained previously via other techniques. Thus, NMR imaging proved to be an efficient method for probing flocculant-induced precipitation in crude oils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. C.A. Hughey, R.P. Rodgers, A.G. Marshall, Anal. Chem. 74(16), 4145 (2002)

    Article  Google Scholar 

  2. J.G. Speight, The Chemistry and Technology of Petroleum, 4th edn. (CRC Press/Taylor & Francis, Boca Raton, 2007)

    Google Scholar 

  3. J.J. Adams, Energy Fuels 28, 2831 (2014)

    Article  Google Scholar 

  4. M.P. Hoepfner, V. Limsakoune, V. Chuenmeechao, T. Maqbool, H.S. Fogler, Energy Fuels 27, 725 (2013)

    Article  Google Scholar 

  5. J. Sjöbloma, S. Simon, Z. Xu, Adv. Colloid Interface Sci. 218, 1 (2015)

    Article  Google Scholar 

  6. E.B. Sirota, M.Y. Lin, Energy Fuels 21, 2809 (2007)

    Article  Google Scholar 

  7. I. Auflem, T. Havre, J. Sjöblom, Colloid Polym. Sci. 280, 695 (2002)

    Article  Google Scholar 

  8. R.R. Coelho, I. Hovell, E.L. Moreno, A.L. de Souza, K. Rajagopal, Pet. Sci. Technol. 25, 41 (2007)

    Article  Google Scholar 

  9. N.V. Lisitza, D.E. Freed, P.N. Sen, Y.-Q. Song, Energy Fuels 23, 1189 (2009)

    Article  Google Scholar 

  10. E.C. Oliveira, Á.C. Neto, V.L. Júnior, E.V.R. de Castro, S.M.C. de Menezes, Fuel 117, 146 (2014)

    Article  Google Scholar 

  11. M.I. Tagirzyanov, M.R. Yakubov, G.V. Romanov, J. Can. Pet. Technol. 46, 9 (2007)

    Article  Google Scholar 

  12. S.N. Trukhan, V.F. Yudanov, A.A. Gabrienko, V. Subramani, S.G. Kazarian, O.N. Martyanov, Energy Fuels 28, 6315 (2014)

    Article  Google Scholar 

  13. J.C. Ravey, G. Ducouret, D. Espinat, Fuel 67, 1560 (1988)

    Article  Google Scholar 

  14. F.V. Tuzikov, YuV Larichev, L.S. Borisova, I.V. Kozhevnikov, O.N. Martyanov, Pet. Chem. 51(4), 281 (2011)

    Article  Google Scholar 

  15. S.I. Andersen, J.O. Jensen, J.G. Speight, Energy Fuels 19, 2371 (2005)

    Article  Google Scholar 

  16. H. Groenzin, O.C. Mullins, Energy Fuels 14, 677 (2000)

    Article  Google Scholar 

  17. Y.G. Burya, I.K. Yudin, V.A. Dechabo, V.I. Kosov, M.A. Anisimov, Appl. Opt. 40, 4028 (2001)

    Article  ADS  Google Scholar 

  18. S.M. Hashmi, A. Firoozabadi, J. Phys. Chem. B 114, 15780 (2010)

    Article  Google Scholar 

  19. F. Mostowfi, K. Indo, O.C. Mullins, R. McFarlane, Energy Fuels 23, 1194 (2008)

    Article  Google Scholar 

  20. I.N. Evdokimov, DYu. Eliseev, NYu. Eliseev, J. Pet. Sci. Eng. 30(3/4), 199 (2001)

    Article  Google Scholar 

  21. S.I. Andersen, S.D. Christensen, Energy Fuels 14, 38 (2000)

    Article  Google Scholar 

  22. S.I. Andersen, K.S. Birdi, J. Colloid Interface Sci. 142, 497 (1991)

    Article  Google Scholar 

  23. G.W. Zajac, N.K. Sethi, J.T. Joseph, Scanning Microsc. 8, 463 (1994)

    Google Scholar 

  24. S. Acevedo, P. Rodriguez, Energy Fuels 18, 1757 (2004)

    Article  Google Scholar 

  25. C.M. Seifried, J. Crawshaw, E.S. Boek, Energy Fuels 27, 1865 (2013)

    Article  Google Scholar 

  26. I.V. Koptyug, R.Z. Sagdeev, Russ. Chem. Rev. 71(7), 593 (2002)

    Article  ADS  Google Scholar 

  27. S. Stapf, S.-I. Han, NMR Imaging in Chemical Engineering (WILEY-VCH, Weinheim, 2006)

    Google Scholar 

  28. H.W. Yarranton, D.P. Ortiz, D.M. Barrera, E.N. Baydak, L. Barré, D. Frot, J. Eyssautier, H. Zeng, Z. Xu, G. Dechaine, M. Becerra, J.M. Shaw, A.M. McKenna, M.M. Mapolelo, C. Bohne, Z. Yang, J. Oake, Energy Fuels 27, 5083 (2013)

    Google Scholar 

  29. F.P. Miknis, A.T. Pauli, L.C. Michon, D.A. Netzel, Fuel 77, 399 (1998)

    Article  Google Scholar 

  30. http://www.astm.org/Standards/D6560.html

  31. L.S. Borisova, Oil Gas Geol. 1, 76 (2009)

    Google Scholar 

  32. P. Callaghan, Principles of Nuclear Magnetic Resonance Microscopic (Clarendon Press, Oxford, 1993)

    Google Scholar 

  33. J. Acosta-Cabronero, L.D. Hall, AlChE J. 55, 1426 (2009)

    Article  Google Scholar 

  34. E.V. Morozov, O.V. Shabanova, O.V. Falaleev, Appl. Magn. Reson. 44(5), 619 (2013)

    Article  Google Scholar 

  35. I.N. Evdokimov, NYu. Eliseev, B.R. Akhmetov, Fuel 82, 817 (2003)

    Article  Google Scholar 

  36. J. Jestin, L. Barre, J. Dispersion Sci. Technol. 25(3), 341 (2004)

    Article  Google Scholar 

  37. M.A. Anisimov, Yu.M. Ganeeva, E.E. Gorodetskii, V.A. Deshabo, V.I. Kosov, V.N Kuryakov, D.I. Yudin, I.K. Yudin, Energy Fuels 28, 6200 (2014)

    Article  Google Scholar 

  38. J.I.S. Aguiar, C.R.E. Mansur, Fuel 140, 462 (2015)

    Article  Google Scholar 

  39. H.W. Yarranton, J. Dispersion Sci. Technol. 26, 5 (2005)

    Article  Google Scholar 

  40. J.S. Buckley, Energy Fuels 26, 4086 (2012)

    Article  Google Scholar 

  41. E. Forte, S.E. Taylor, Adv. Colloid Interface Sci. 217, 1 (2015)

    Article  Google Scholar 

  42. J.F. Jover, E.A. Müller, A.J. Haslam, A. Galindo, G. Jackson, H. Toulhoat, C. Nieto-Draghi, Energy Fuels 29(2), 556 (2015)

    Google Scholar 

  43. P.-A. Artola, F.E. Pereira, C.S. Adjiman, A. Galindo, E.A. Müller, G. Jackson, A.J. Haslam, Fluid Phase Equilib. 306(1), 129 (2011)

    Article  Google Scholar 

  44. N. Haji-Akbari, P. Teeraphapkul, H.S. Fogler, Energy Fuels 28, 909 (2014)

    Article  Google Scholar 

  45. A.A. Gabrienko, V. Subramani, O.N. Martyanov, S.G. Kazarian, Adsorpt. Sci. Technol. 32, 243 (2014)

    Article  Google Scholar 

  46. A.A. Gabrienko, E.V. Morozov, V. Subramani, O.N. Martyanov, S.G. Kazarian, J. Phys. Chem. C 119, 2646 (2015)

    Article  Google Scholar 

  47. M. Sedghi, L. Goual, W. Welch, J. Kubelka, J. Phys. Chem. B 117, 5765 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

This research was performed with the financial support of Russian Science Foundation (project no. 15-19-00119).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Morozov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morozov, E.V., Martyanov, O.N. Probing Flocculant-Induced Asphaltene Precipitation via NMR Imaging: from Model Toluene-Asphaltene Systems to Natural Crude Oils. Appl Magn Reson 47, 223–235 (2016). https://doi.org/10.1007/s00723-015-0741-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-015-0741-9

Keywords

Navigation