Skip to main content
Log in

The Geometrical Phase in the PEANUT Experiments for the NQR Spectroscopy for the Spins I = 3/2

  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

The results of the research of a non-cyclic geometrical phase of the 35Cl nuclear quadrupole resonance (NQR) signals are presented, caused by the character of nuclear magnetization trajectory under radio-frequency excitation by means of PEANUT sequence for powdered samples. The analytical math expressions for a geometrical phase in NQR for a spin I = 3/2 while rotating nuclear magnetization by means of the PEANUT pulse sequence with frequency detuning and variable duration of the pulse were obtained. It is shown that the measured phase for this sequence is a geometrical phase and it may accumulate up to Δω  0 with a change of duration of the radio-frequency pulse \(t_{\text{w}}^{\prime }\). The experiment with the phase inversion and with nutation detection by means of echo amplitude was first applied in NQR jointly with measuring a geometrical phase. Since nutations detection and excitation in the PEANUT method are completely separate in time, experiments with high nutation frequencies become possible. The experimental examples supporting theoretically predicted distinctions of the geometrical phase for the PEANUT method in 35Cl NQR are presented. An alternative nutation experiment is proposed to determine asymmetry parameter η for the nuclei with the spin I = 3/2 in powders proceeding from the nature of a non-cyclic geometrical phase accumulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. M.V. Berry, Proc. R. Soc. London Ser. A 392, 45 (1984)

    Article  MATH  ADS  Google Scholar 

  2. R. Tycko, Phys. Rev. Lett. 58, 2281 (1987)

    Article  ADS  Google Scholar 

  3. D. Suter, K.T. Mueller, A. Pines, Phys. Rev. Lett. 60, 1218 (1988)

    Article  ADS  Google Scholar 

  4. A. Zee, Phys. Rev. A 38, 1 (1988)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  5. J.W. Zwanzinger, M. Koenig, A. Pines, Phys. Rev. A 42, 3107 (1990)

    Article  ADS  Google Scholar 

  6. J.W. Zwanzinger, Phys. Rev. A 43, 3232 (1991)

    Article  ADS  Google Scholar 

  7. G.B. Furman, J.M. Kadzhaya, J. Magn. Reson. A 105, 7 (1993)

    Article  ADS  Google Scholar 

  8. S. Appelt, G. Waeckerle, M. Mehring, Phys. Rev. Lett. 72, 3921 (1994)

    Article  ADS  Google Scholar 

  9. J.A. Jones, A. Pines, Chem. Phys. Lett. 245, 215 (1995)

    Article  ADS  Google Scholar 

  10. H. Asakura, Prog. Theor. Phys. 101, 473 (1999)

    Article  MathSciNet  ADS  Google Scholar 

  11. T. Gopinath, A. Kumar, Phys. Rev. A 73, 022326 (2006)

    Article  ADS  Google Scholar 

  12. N. Sinyavsky, M. Mackowiak, C. Schmidt, Z. Naturforsch. 63a, 81 (2008)

  13. N. Sinyavsky, E. Korotey, M. Mackowiak, J. Mol. Struct. 830, 131 (2007)

  14. W.N. Lisin, G.G. Fedoruk, E. P. Haymovich, Pis’ma Zh. Eksp. Teor. Fiz. 50, 205 (1989)

  15. O. Glotova, N.Ponamareva, N.Sinyavsky, B.Nogaj, Solid State Nuclear Magnetic Resonance, 39, 1–6 (2011)

  16. O. Glotova, N. Sinyavsky, B. Nogaj, Vestnik Baltiiskogo federal'nogo universiteta im. I. Kanta 5, 28–33 (2011)

  17. Nikolay Sinyavsky, Olga Glotova, Evgeniy Korotey, Explosives detection using magnetic and nuclear resonance techniques NATO science for peace and security, Ser. B. Phys. Biophys. 253–269 (2009)

  18. O. N. Bolebrukh, N. Ya. Sinyavsky, B. Dobosz, I. P. Korneva, R. Krzyminiewski, Mostafin, B. Nogaj, Magn. Reson. Chem. 51, 614–620 (2013)

  19. P. J. Leek, J. M. Fink, A. Blais, R. Bianchetti, M. Göppl, J. M. Gambetta, D. I Schuster, L. Frunzio, R. J. Schoelkopf, A. Wallraff, Science 318(5858), 1889–1892 (2007)

  20. S. Stoll, G. Jeschke, M. Willer, A. Schweiger, J. Magn. Reson. 130, 86–96 (1998)

    Article  ADS  Google Scholar 

  21. A. Schweiger, G. Jeschke, Principles of Pulse Electron Paramagnetic Resonance (Oxford University Press, UK, 2001), p 578

  22. N. Sinyavsky, Ph. Dolinenkov, M. Mackowiak, Solid State Nuclear Magnetic Resonance, 4344, 32–35 (2012)

  23. N. Sinyavsky, N. Velikite, M. Mackowiak, Mol. Phys. 99, 1653–1667 (2001)

    Article  ADS  Google Scholar 

  24. J.C. Pratt, P. Raghunathan, C.A. McDowell, J. Magn. Reson. 20, 313–327 (1975)

    ADS  Google Scholar 

  25. M.J. Weber, E.L. Hahn, Phys. Rev. 120, 365 (1960)

    Article  ADS  Google Scholar 

  26. N. Mukunda, R. Simon, Ann. Phys. (N.Y.) 228, 205 (1993)

  27. O. Glotova, N. Sinyavsky, M. Jadzyn, M. Ostafin, B. Nogaj, Appl. Magn. Reson. 39, 205–214 (2010)

    Article  Google Scholar 

Download references

Acknowledgments

N.S. thanks the Russian Foundation for Basic Research (RFBR, project no. 14-03-00038a) for the financial support. We thank also Dipl.-Ing. P. Dolinenkov for the performed PEANUT measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Sinyavsky.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sinyavsky, N., Kostrikova, N. The Geometrical Phase in the PEANUT Experiments for the NQR Spectroscopy for the Spins I = 3/2. Appl Magn Reson 47, 63–76 (2016). https://doi.org/10.1007/s00723-015-0731-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-015-0731-y

Keywords

Navigation