Skip to main content
Log in

Monitoring the Tetraethyl Orthosilicate (TEOS)-Based Sol–Gel Process with Cu(II) Ions as a Spin Probe

  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

The various stages of the tetraethyl orthosilicate-based sol–gel process were investigated using electron paramagnetic resonance (EPR) spectroscopy with Cu(II) cations as a spin probe. The latter were introduced to the starting reaction mixture in the form of various copper(II) salts containing anions of different basicity (CuCl2, Cu(ac)2, or CuSO4). At the various defined stages of the sol–gel process, the experimental EPR spectra, recorded at both ambient and liquid nitrogen temperature, were found to be a superimposition of three main types of individual subspectra (Γ 1, Γ 2, and Φ), which reflect the different local environment in which the Cu(II) ions were located. The spin Hamiltonian parameters of each individual subspectrum remained identical, within experimental error, throughout the various stages of the sol–gel process. In contrast, the relative proportion of the individual subspectra varied significantly as the sol–gel process proceeded, from which the liquid-state to solid-state transition could be monitored as it occurred in the sol–gel reaction medium. Identical results were obtained, irrespective of the nature of the copper(II) salt employed. The results demonstrate that the EPR method provides an effective means with which to monitor the sol-to-gel transition from the viscous, colloid suspension to the final viscoelastic gel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. D. Trandafir, M. Vasilescu, S. Simon, J. Sol-Gel Sci. Technol. 63, 425–434 (2012)

    Article  Google Scholar 

  2. C.J. Brinker, G.W. Scherer, Sol-Gel Science (Academic Press, New York, 1990)

    Google Scholar 

  3. J. Wong, C. Angel, Glass structure by spectroscopy (Marcel Dekker, Basel, 1976)

    Google Scholar 

  4. D.L. Griscom, Glass Sci. Technol., vol. 4B. (Academic Press, Boston, 1990)

  5. H. Tominaga, Y. Ono, T. Keii, J. Catal. 40, 197–202 (1975)

    Article  Google Scholar 

  6. J.G. Darab, R.K. MacCrone, J. Non Cryst. Solids 95&96, 1203–1210 (1987)

  7. S. Ikoma, S. Tanako, E. Nomoto, H. Yokoi, J. Non Cryst. Solids 113, 130–136 (1989)

    Article  ADS  Google Scholar 

  8. A.M. Klonkowski, C.W. Schlaepfer, J. Non Cryst. Solids 129, 101–108 (1990)

    Article  Google Scholar 

  9. J.G. Darab, R.K. MacCrone, Phys. Chem. Glasses 32, 91–101 (1991)

    Google Scholar 

  10. A.M. Klonkowski, C.W. Schlaepfer, J. Non Cryst. Solids 149, 189–195 (1992)

    Article  ADS  Google Scholar 

  11. A.M. Klonkowski, K. Koehler, C.W. Schlaepfer, J. Mater. Chem. 3, 105 (1993)

    Article  Google Scholar 

  12. A. Shames, O. Lev, B. Iosofzon, J. Non Cryst. Solids 163, 105–114 (1993)

    Article  ADS  Google Scholar 

  13. M. Liška, M. Mazur, H. Hulínová, P. Pelikán, M. Valko, I. Nerad, Ceram-Silicate 39, 69–72 (1995)

    Google Scholar 

  14. M. Mazur, M. Valko, R. Klement, P. Pelikán, Prog. Coord. Organometal. Chem. 3 (STU Press, Bratislava, 1997), pp 285–290

  15. G. Córdoba, M. Viniegra, J.L. Fierro, J. Padilla, R. Arroyo, J. Solid State Chem. 138, 1–6 (1998)

    Article  ADS  Google Scholar 

  16. A.M. Klonkowski, B. Grobelna, T. Widernik, A. Jankowska-Frydel, W. Mozgawapar, Langmuir 15, 5814–5819 (1999)

    Article  Google Scholar 

  17. J.F.P. Robles, F.J.G. Rodrigues, J.M.Y. Limon, F.J.E. Beltran, Y.V. Vorobiev, J.G. Hernandez, J. Phys. Chem. Solids 60, 1729–1736 (1999)

    Article  ADS  Google Scholar 

  18. V.B. Prokopenko, V.S. Gurin, A.A. Alexenko, V.S. Kulikauskas, D.L. Kovalenko, J. Phys. D Appl. Phys. 33, 3152–3155 (2000)

    Article  ADS  Google Scholar 

  19. J.M. Yánez-Limón, J.F. Pérez-Robles, J. González-Hernández, Y.V. Vorobiev, J.A. Romano, F.C.G. Gandra, B.C. Da Silva, J. Sol-Gel Sci. Technol. 18, 207–217 (2000)

    Article  Google Scholar 

  20. T. Breyer, F.W. Breitbarth, W. Vogelsberger, Bull. Polish Acad. Sci. Chem. 48, 325–336 (2000)

    Google Scholar 

  21. W.K. Jozwiak, E. Szubiakiewicz, A.M. Klonkowski, T. Widernik, W. Ignaczak, T. Paryjczak, Stud. Surf. Sci. Catal. 130, 3315–3320 (2000)

    Article  Google Scholar 

  22. A.M. Klonkowski, T. Widernik, B. Grobelna, W.K. Jóźwiak, H. Proga, E. Szubiakiewicz, J. Sol-Gel Sci. Technol. 20, 161–180 (2001)

    Article  Google Scholar 

  23. P.I. Paulose, J. Gin, T. Vinoy, J. Gijo, N.V. Unnikrishanan, M.K.R. Warrier, Bull. Mater. Sci. 25, 69–74 (2002)

    Article  Google Scholar 

  24. W. Vogelsberger, A. Seidel, T. Brayer, Langmuir 18, 3027–3033 (2002)

    Article  Google Scholar 

  25. T. Breyer, F.W. Breitbarth, W. Vogelsberger, J. Colloid Interf. Sci. 266, 153–159 (2003)

    Article  Google Scholar 

  26. Z. Wang, Q. Liu, J. Yu, T. Wu, G. Wang, Appl. Catal. A Gener. 239, 87–94 (2003)

    Article  Google Scholar 

  27. S. Mukherjee, A.K Pal. J. Non Cryst. Solids 341, 170–177 (2004)

    Article  ADS  Google Scholar 

  28. O.B. Miled, C. Boissiere, C. Sanchez, J. Livage, J. Phys. Chem. Solids 67, 1775–1780 (2006)

    Article  ADS  Google Scholar 

  29. L.D. Bogomolova, T.K. Pavlushkina, I.V. Morozova, Glass Ceram. 63, 254–258 (2006)

    Article  Google Scholar 

  30. M. Mazur, J. Moncol, M. Kleinová, P. Stachová, M. Valko, Phys. Chem. Glasses 47, 278–282 (2006)

    Google Scholar 

  31. K. Kledzik, M. Jamrógiewicz, M. Gwiazda, E. Wagner-Wysiecka, J. Jezierska, J.F. Biernat, A.M. Klonkowski, Mater. Sci. Poland 25, 1041–1051 (2007)

    Google Scholar 

  32. D.H. Ji, X.J. Zou, D.F. Zheng, L.X. Wang, S.Y. Liu, W.C. Zhu, G.J. Wang, Z.L. Wang, Polish J. Chem. 82, 1097–1104 (2008)

    Google Scholar 

  33. J.H. Chen, F. Wang, N.S. Cheng, Z.J. Ding, Z.H. Fu, D.H. Yin, J. Inorg. Mater. 24, 695–701 (2009)

    Article  Google Scholar 

  34. Q. Zhang, X. Liu, Y. Qiao, B. Qian, G. Dong, J. Ruan, Q. Zhou, J. Qiu, D. Chen, Opt. Mater. 32, 427–431 (2010)

    Article  ADS  Google Scholar 

  35. F. Vignali, G. Predieri, E. Feci, S. Palanti, M.C. Baratto, R. Basosi, E. Callone, K. Müller, J. Sol-Gel Sci. Technol. 60, 445–456 (2011)

    Article  Google Scholar 

  36. A. Dehelean, S. Rada, V. Danciu, E. Culea, M. Stan, A. Popa, O. Raita, AIP Conf. Proc. 1425, 65–68 (2012)

    Article  ADS  Google Scholar 

  37. M.P. Pachamuthu, A. Ramanathan, K. Santhi, R. Maheswari, ACS Symp. Ser. 1132, 195–211 (2013)

    Article  Google Scholar 

  38. G. Sivasubramanian, C. Shanmugam, V.R. Parameswaran, J. Porous Mater. 20, 417–430 (2013)

    Article  Google Scholar 

  39. J. Mazur, M. Švorec, M. Kleinová, Valko. Prog. Coord. Bioinorg. Chem. 6, 317–322 (2003)

    Google Scholar 

  40. K. Dyrek, M. Che, Chem. Rev. 97, 305–331 (1997)

    Article  Google Scholar 

  41. G. Martini, V. Bassetti, J. Phys. Chem. 89, 2505–2511 (1979)

    Article  Google Scholar 

  42. G. Martini, V. Bassetti, J. Phys. Chem. 89, 2511–2515 (1979)

    Article  Google Scholar 

  43. V. Bassetti, L. Burlamacchi, G. Martini, J. Phys. Chem. 101, 5471–5477 (1979)

    Google Scholar 

  44. M. Mazur, M. Kleinová, J. Moncol, P. Stachová, M. Valko, J. Telser, J. Non Cryst. Solids 352, 3158–3165 (2006)

    Article  ADS  Google Scholar 

  45. M. Mazur, L. Husáriková, C.J. Rhodes, M. Valko, J. Sol-Gel Sci. Technol. 76, 110–119 (2015)

    Article  Google Scholar 

  46. M. Mazur, M. Valko, R. Klement, H. Morris, Anal. Chim. Acta 333, 249–252 (1996)

    Article  Google Scholar 

  47. M. Mazur, M. Valko, H. Morris, R. Klement, Anal. Chim. Acta 333, 253–265 (1996)

    Article  Google Scholar 

  48. H. Thiele, J. Etstling, P. Such, P. Hoefer, WINEPR (Bruker Analytic Gmb, Rheinstetten, 1992)

    Google Scholar 

  49. R.T. Weber, WINEPR SimFonia (EPR Division, Bruker Instr. Inc., Billerica, 1995)

    Google Scholar 

  50. P. Pelikán, M. Liška, M. Valko, M. Mazur, J. Magnet. Reson. 122, 9–15 (1996)

    Article  ADS  Google Scholar 

  51. H.A. Jahn, E. Teller, Proc. R. Soc. 161, 220–235 (1937)

    Article  ADS  Google Scholar 

  52. L.B. Bersuker, Coord. Chem. Rev. 14, 357–412 (1975)

    Article  Google Scholar 

  53. A. Shames, O. Lev, B. Iosefzon-Kuyavskaya, J. Non Cryst. Solids 175, 14–20 (1994)

    Article  ADS  Google Scholar 

  54. K. Dyrek, A. Adamski, Z. Sojka, Spectrochem. Acta Part A 54, 2337–2348 (1998)

    Article  ADS  Google Scholar 

  55. L.D. Bogomolova, A.V. Jackin, N.A. Krasilnikova, J. Non Cryst. Solids 241, 13 (1998)

    Article  ADS  Google Scholar 

  56. N. Abiddi, B. Deroide, J.V. Zanchetta, D. Bourret, H. Elmkami, P. Rumori, Phys. Chem. Glasses 37, 149 (1996)

    Google Scholar 

  57. N. Abiddi, B. Deroide, J.V. Zanchetta, Nucleonika 42, 505 (1997)

    Google Scholar 

  58. P. Rumori, B. Deroide, N. Abiddi, H. Elmkami, J.V. Zanchetta, J. Phys. Chem. Solids 59, 959 (1998)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Scientific Grant Agency of the Slovak Republic (Projects VEGA 1/0765/14 and 1/0041/15).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Mazúr.

Additional information

Dedicated to the 70th anniversary of the discovery of Electron Paramagnetic Resonance by Professor E. K. Zavoiskij.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mazúr, M., Husáriková, L., Valko, M. et al. Monitoring the Tetraethyl Orthosilicate (TEOS)-Based Sol–Gel Process with Cu(II) Ions as a Spin Probe. Appl Magn Reson 47, 1–12 (2016). https://doi.org/10.1007/s00723-015-0724-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-015-0724-x

Keywords

Navigation