Skip to main content
Log in

Effect of Functional Group and Surface Charge of PEG and Dextran-Coated USPIO as a Contrast Agent in MRI on Relaxivity Constant

  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

The challenges in molecular imaging are focused on the development of novel contrast agents with much lower relaxation times. Ultrasmall superparamagnetic iron oxide nanoparticles known as USPIO have been used for a variety of applications such as imaging of cancer, apoptosis, and hyperthermia providing higher signal changes based on \(T_{2}^{*}\) weighted susceptibility effects. Although many studies had been performed on USPIO there is still a lack of data on the effects of the physicochemical properties of these nanoparticles (NP) such as hydrodynamic size, surface charge and type of functional groups, which may alter the relaxivity of these NPs. The aim of this study was to evaluate the effect of different functional groups and surface charges of PEGylated and dextran-coated NPs on their magnetic properties. All relaxometry studies were performed using a 3-T magnetic resonance imaging. Our results showed that the impact of charge on magnetic properties is much higher than that of coating thickness. In this respect, particles with positive surface charges showed higher r 2/r 1 ratios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. A. Akbarzadeh, M. Samiei, S. Davaran, Nanoscale Res. Lett. 7, 1–13 (2012)

    Article  Google Scholar 

  2. S.M. Cromer Berman, P. Walczak, J.W. Bulte, WIREs Nanomed. Nanobiotechnol. 3, 343–355 (2011)

    Article  Google Scholar 

  3. K. Luo, J. Tian, G. Liu, J. Sun, C. Xia, H. Tang, L. Lin, T. Miao, X. Zhao, F. Gao, J. Nanosci. Nanotechnol. 10, 540–548 (2010)

    Article  Google Scholar 

  4. J. Xie, G. Liu, H.S. Eden, H. Ai, X. Chen, Acc. Chem. Res. 44, 883–892 (2011)

    Article  Google Scholar 

  5. M. Amanlou, S.D. Siadat, S.E.S. Ebrahimi, A. Alavi, M.R. Aghasadeghi, M.S. Ardestani, S. Shanehsaz, M. Ghorbani, B. Mehravi, M.S. Alavidjeh, Int. J. Nanomed. 6, 747–763 (2011)

    Article  Google Scholar 

  6. R. Jahanbakhsh, F. Atyabi, S. Shanehsazzadeh, Z. Sobhani, M. Adeli, R. Dinarvand, DARU 21, 53–62 (2013)

    Article  Google Scholar 

  7. H. Omid, M.A. Oghabian, R. Ahmadi, N. Shahbazi, H.R.M. Hosseini, S. Shanehsazzadeh, R.N. Zangeneh, BBA Gen. Subj. 1840, 428–433 (2014)

    Article  Google Scholar 

  8. M.A. Oghabian, N. Gharehaghaji, A. Masoudi, S. Shanehsazzadeh, R. Ahmadi, R.F. Majidi, H.R.M. Hosseini, Adv. Sci. Eng. Med. 5, 37–45 (2013)

    Article  Google Scholar 

  9. S. Shanehsazzadeh, M.A. Oghabian, F.J. Daha, M. Amanlou, B.J. Allen, J. Radioanal. Nucl. Chem. 295, 1517–1523 (2013)

    Article  Google Scholar 

  10. I. Coroiu, A. Darabont, D.E. Demco, Appl. Magn. Reson. 15, 531–538 (1998)

    Article  Google Scholar 

  11. S. Shanehsazzadeh, A. Lahooti, Nucl. Med. Biol. 41, 625 (2014)

    Article  Google Scholar 

  12. S. Shanehsazzadeh, M.A. Oghabian, A. Lahooti, M. Abdollahi, S.A. Haeri, M. Amanlou, F.J. Daha, B.J. Allen, Nucl. Med. Commun. 34, 915–925 (2013)

    Google Scholar 

  13. C. Corot, P. Robert, J.M. Idée, M. Port, Adv. Drug Deliv. Rev. 58, 1471–1504 (2006)

    Article  Google Scholar 

  14. R.E. Hendrick, E. Mark Haacke, J. Magn. Reson. Imaging 3, 137–148 (1993)

    Article  Google Scholar 

  15. S. Shanehsazzadeh, M. Oghabian, B. Allen, M. Amanlou, A. Masoudi, F. Daha, J. Med. Phys. 38, 34–40 (2013)

    Article  Google Scholar 

  16. G. Gambarota, H.W.M. van Laarhoven, M. Philippens, W.J.M. Peeters, P. Rijken, A. van der Kogel, C.J.A. Punt, A. Heerschap, Appl. Magn. Reson. 38, 349–360 (2010)

    Article  Google Scholar 

  17. H. Amiri, L. Bordonali, A. Lascialfari, S. Wan, M.P. Monopoli, I. Lynch, S. Laurent, M. Mahmoudi, Nanoscale 5, 8656–8665 (2013)

    Article  ADS  Google Scholar 

  18. S. Shanehsazzadeh, M. Oghabian, B. Allen, M. Amanlou, F.J. Daha, World Congress on Medical Physics and Biomedical Engineering, Beijing, China May 26–31, 2012 (Springer, Heidelberg, 2012), pp. 2204–2207

    Google Scholar 

  19. S.N. Tabatabaei, J. Lapointe, S. Martel, in IEEE/RSJ International Conference on Intelligent Robots and Systems. IROS 2009, pp. 546–551

  20. H. Wang, J. Wang, X. Deng, H. Sun, Z. Shi, Z. Gu, Y. Liu, Y. Zhao, J. Nanosci. Nanotechnol. 4, 1019–1024 (2004)

    Article  Google Scholar 

  21. F. Scherer, M. Anton, U. Schillinger, J. Henke, C. Bergemann, A. Kruger, B. Gansbacher, C. Plank, Gene Ther. 9, 102–109 (2002)

    Article  Google Scholar 

  22. S. Shanehsazzadeh, C. Gruettner, A. Lahooti, M. Mahmoudi, B.J. Allen, M. Ghavami, F.J. Daha, M.A. Oghabian, Contrast Media Mol. Imaging (2014). doi:10.1002/cmmi.1627

    Google Scholar 

  23. A. Yilmaz, M. Yurdakoc, J. Bernarding, H.M. Vieth, J. Braun, A. Yurt, Appl. Magn. Reson. 22, 11–22 (2002)

    Article  Google Scholar 

  24. A. Yilmaz, H. Budak, R. Longo, Appl. Magn. Reson. 14, 51–58 (1998)

    Article  Google Scholar 

  25. H. Duan, M. Kuang, X. Wang, Y.A. Wang, H. Mao, S. Nie, J. Phys. Chem. C 112, 8127–8131 (2008)

    Article  Google Scholar 

  26. E.K. Larsen, T. Nielsen, T. Wittenborn, L.M. Rydtoft, A.R. Lokanathan, L. Hansen, L. Ostergaard, P. Kingshott, K.A. Howard, F. Besenbacher, N.C. Nielsen, J. Kjems, Nanoscale 4, 2352–2361 (2012)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

We thank Micromod Company for their supports in terms of providing nanoparticles and the quantitative analysis of the particles. Council of Research of Tehran University of Medical Sciences (TUMS), Tehran, Iran, supported this work.

Conflict of Interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Ali Oghabian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Najafian, N., Shanehsazzadeh, S., Hajesmaeelzadeh, F. et al. Effect of Functional Group and Surface Charge of PEG and Dextran-Coated USPIO as a Contrast Agent in MRI on Relaxivity Constant. Appl Magn Reson 46, 685–692 (2015). https://doi.org/10.1007/s00723-015-0667-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-015-0667-2

Keywords

Navigation