Skip to main content
Log in

Investigations of Spin-Hamiltonian Parameters and Local Structures for the Isoelectronic 3d 3 Ions Cr3+, Mn4+ and Fe5+ Centers in BaTiO3 Crystals

  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

The spin-Hamiltonian parameters (g factors g //, g and zero-field splitting D) of the isoelectronic 3d 3 ions Cr3+, Mn4+ and Fe5+ in rhombohedral phase of BaTiO3 are calculated from the high-order perturbation formulas based on the two-mechanism model, where the contributions to spin-Hamiltonian parameters due to both the crystal-field (CF) mechanism concerning the interaction of CF excited states with ground state and the charge-transfer (CT) mechanism concerning that of CT excited states with ground state are contained. The calculated results are in reasonable agreement with the experimental values. The calculations indicate that the relative importance of CT mechanism increases with the increasing valence state of 3d 3 ions and that the fact of \(g_{i} (i = {//}, \bot ) > g_{e} ( \approx 2.0023\), the free-electron g value) for Fe5+ in BaTiO3 is due to the contributions of CT mechanism being larger than those of CF mechanism. So, for the high valence state d n ions in crystals, the rational explanations of spin-Hamiltonian parameters should take both CF and CT mechanisms into account. The local trigonal distortions (characterized by the off-center displacements \(\varDelta\) z of 3d 3 ions) of 3d 3 impurity centers in BaTiO3 crystals are also estimated. These trigonal distortions differ not only from that in the host BaTiO3 crystal, but also from impurity to impurity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L.M. Huang, J. Zhang, L. Kymissis, S. O’Brien, Adv. Func. Mater. 20, 554 (2012)

    Article  Google Scholar 

  2. H.L. Gong, X.H. Wang, S.P. Zhang, Z.B. Tian, L.T. Li, J. Appl. Phys. 112, 114119 (2012)

    Article  ADS  Google Scholar 

  3. H.J. Lee, S.O. Ural, L. Chen, K. Uchino, S.J. Zhang, J. Am. Ceram. Soc. 95, 3383 (2012)

    Article  Google Scholar 

  4. E.V. Ramana, F. Figueiras, M.P.F. Graca, M.A. Valente, Dalton Trans. 43, 9934 (2014)

    Article  Google Scholar 

  5. M. Liu, C.R. Ma, G. Collins, J. Liu, C.L. Chen, A.D. Alemayehu, G. Subramanyam, Y. Ding, J.H. Chen, C. Dai, Nanoscale Res. Lett. 8, 338 (2013)

    Article  ADS  Google Scholar 

  6. P. Gunter, J.P. Huignard (eds.), Photorefractive Materials and Their Applications I and II, Topics in Applied Physics, vols. 61 and 62 (Springer, Berlin, 1989)

  7. L. Mager, G. Paulat, M.H. Garret, D. Rytz, G. Roosen, Opt. Mater. 4, 381 (1995)

    Article  ADS  Google Scholar 

  8. O.F. Schirmer, M. Meyer, A. Rudiger, C. Veber, Opt. Mater. 18, 1 (2001)

    Article  ADS  Google Scholar 

  9. O.F. Schirmer, Radiat. Eff. Def. Solids 149, 1 (1999)

    Article  ADS  Google Scholar 

  10. R.N. Schwartz, B.A. Wechsler, L. West, Appl. Phys. Lett. 67, 1352 (1995)

    Article  ADS  Google Scholar 

  11. R. Bottcher, H.T. Langhammer, T. Muller, J. Phys. Condens. Matter 23, 115903 (2011)

    Article  ADS  Google Scholar 

  12. H.T. Langhammer, T. Muller, R. Bottcher, H.P. Abicht, J. Phys. Condens. Matter 20, 085206 (2008)

    Article  ADS  Google Scholar 

  13. R. Bottcher, H.T. Langhammer, T. Muller, J. Phys. Condens. Matter 21, 075904 (2009)

    Article  ADS  Google Scholar 

  14. S. Lenjer, O.F. Schirmer, H. Hesse, ThW Kool, Phys. Rev. B 66, 165106 (2002)

    Article  ADS  Google Scholar 

  15. Y. Mei, W.C. Zheng, J. Magn. Magn. Mater. 348, 51 (2013)

    Article  ADS  Google Scholar 

  16. K.A. Muler, W. Berlinger, J. Albers, Phys. Rev. B 32, 5837 (1985)

    Article  ADS  Google Scholar 

  17. K.A. Muller, W. Berlinger, K.W. Blazey, J. Albers, Solid State Commun. 61, 21 (1987)

    Article  ADS  Google Scholar 

  18. E. Possenriede, O.F. Schirmer, H.J. Donnerberg, G. Godefroy, A. Maillard, Ferroelectrics 92, 245 (1989)

    Article  Google Scholar 

  19. E. Possenriede, P. Jacobs, O.F. Schirmer, J. Phys. Condens. Matter 4, 4719 (1992)

    Article  ADS  Google Scholar 

  20. M.E. Lines, A.M. Glass, Principles and Applications of Ferroelectrics and Related Materials (Oxford University Press, Oxford, 1977)

    Google Scholar 

  21. X.X. Wu, X.P. Yu, W.C. Zheng, Appl. Magn. Reson. 45, 389 (2014)

    Article  Google Scholar 

  22. J.A. Arambura, M. Moreno, Solid State Commun. 62, 513 (1987)

    Article  ADS  Google Scholar 

  23. W.C. Zheng, X.X. Wu, J. Phys. Chem. Solids 66, 1701 (2005)

    Article  ADS  Google Scholar 

  24. X.X. Wu, W.C. Zheng, W. Fang, Spectrochim. Acta A 69, 498 (2008)

    Article  ADS  Google Scholar 

  25. J.S. Griffith, The Theory of Transition Metal Ions (Cambridge University Press, London, 1964)

    Google Scholar 

  26. J.R. Pilbrow, Transition Ion Electron Paramagnetic Resonance (Clarendon Press, Oxford, 1990)

    Google Scholar 

  27. A. Abragam, B. Bleaney, Electron Paramagnetic Resonance of Transition Ions (Oxford University Press, London, 1970)

    Google Scholar 

  28. A.B.P. Lever, Inorganic Electronic Spectroscopy (Elsevier, Amsterdam, 1984)

    Google Scholar 

  29. C.A. Morrison, Crystal Field for Transition Meter Ions in Laser Host Materials (Springer, Berlin, 1992)

    Book  Google Scholar 

  30. P.H.M. Uylings, A.J.J. Raassen, J.F. Wyart, J. Phys. B 17, 4103 (1984)

    ADS  Google Scholar 

  31. M.L. Du, C. Rudowicz, Phys. Rev. B 46, 8974 (1992)

    Article  ADS  Google Scholar 

  32. W.C. Zheng, H.G. Liu, G.M. Jia, L. He, Spectrochim. Acta A 71, 1551 (2008)

    Article  ADS  Google Scholar 

  33. E. Clementi, D.L. Raimondi, J. Chem. Phys. 38, 2686 (1963)

    Article  ADS  Google Scholar 

  34. E. Clementi, D.L. Raimondi, W.P. Reinhardt, J. Chem. Phys. 47, 1300 (1967)

    Article  ADS  Google Scholar 

  35. E. Siegel, K.A. Muller, Phys. Rev. B 20, 3587 (1979)

    Article  ADS  Google Scholar 

  36. H.H. Tippins, Phys. Rev. B 1, 126 (1970)

    Article  ADS  Google Scholar 

  37. G. Blasse, P.H.M. de Korte, J. Inorg. Nucl. Chem. 43, 1505 (1981)

    Article  Google Scholar 

  38. F.M. Michel-Calendinl, K.A. Muller, Solid State Commun. 40, 255 (1981)

    Article  ADS  Google Scholar 

  39. V. Trepakov, V. Vikhnin, S. Eden, S. Kapphan, H. Hesse, J. Seglins, L. Jastrabik, J. Korean Phys. Soc. 32, S1113 (1998)

    Google Scholar 

  40. M.G. Zhao, J.A. Xu, G.R. Bai, S.H. Xie, Phys. Rev. B 27, 1516 (1983)

    Article  ADS  Google Scholar 

  41. W.C. Zheng, J. Phys. 7, 8351 (1995)

    Google Scholar 

  42. D. Hernandez, F. Rodringuez, M. Moreno, H.U. Gudel, Phys. B 265, 186 (1999)

    Article  ADS  Google Scholar 

  43. S. Ivascu, A.S. Gruia, N.M. Avram, Phys. B 450, 146 (2014)

    Article  ADS  Google Scholar 

  44. D.J. Newman, B. Ng, Rep. Prog. Phys. 52, 699 (1989)

    Article  ADS  Google Scholar 

  45. C.E. Schaffer, Struct. Bond. 5, 68 (1968)

    Article  Google Scholar 

  46. B.Z. Malkin, Z.I. Ivanenko, I.B. Aizenberg, Fiz. Tverd. Tela 12, 1873 (1970) [Sov. Phys.-Solid State 12, 1491(1970)]

  47. B.Z. Malkin, in Spectroscopy of Solids Containing Rare-Earth Ions, ed. by A.A. Kaplyanskii, R.M. Macfarlane (North-Holland, Amsterdam, 1987), p. 13

  48. M.G. Brik, Y.Y. Yeung, J. Phys. Chem. Solids 69, 2401 (2008)

    Article  ADS  Google Scholar 

  49. C. Rudowicz, M.G. Brik, N.M. Avram, Y.Y. Yeung, P. Gnutek, J. Phys. 18, 5221 (2006)

    Google Scholar 

  50. M. Acikgoz, P. Gnutek, C. Rudowicz, Opt. Mater. 36, 1342 (2014)

    Article  ADS  Google Scholar 

  51. P. Guntek, Z.Y. Yang, C. Rudowicz, J. Phys. 21, 455402 (2009)

    Google Scholar 

  52. C. Rudowicz, Y.Y. Zhou, J. Magn. Magn. Mater. 111, 153 (1992)

    Article  ADS  Google Scholar 

  53. M.G. Brik, C.N. Avram, N.M. Avram, Phys. B 348, 78 (2006)

    Article  ADS  Google Scholar 

  54. M.V. Eremin, I.I. Antonova, J. Phys. 10, 5567 (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen-Chen Zheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, XX., Zheng, WC. Investigations of Spin-Hamiltonian Parameters and Local Structures for the Isoelectronic 3d 3 Ions Cr3+, Mn4+ and Fe5+ Centers in BaTiO3 Crystals. Appl Magn Reson 46, 85–93 (2015). https://doi.org/10.1007/s00723-014-0618-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-014-0618-3

Keywords

Navigation