Skip to main content
Log in

Silicon-29 NMR Spectroscopy Study of the Effect of Tetraphenylammonium (TPA) as a Template on Distribution of Silicate Species on Alkaline Aqueous and Alcoholic Silicate Solutions

  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

Silicon-29 nuclear magnetic resonance (NMR) spectroscopy is used to characterize aqueous and non-aqueous alkaline solutions of tetraphenylammonium (TPA) silicates. Effect of the TPA cation on the equilibrium of silicate oligomers in aqueous and non-aqueous alkaline silicate solutions is investigated using 29Si NMR spectra. It was found that the TPA cation had a structural directing role, directing the silicate species to form minor amounts of high order silicate anion in the presence of a high concentration of silicon. 29Si NMR spectra of TPA silicate solutions indicate that considerable changes occur by changing the Si/TPA ratio. Also the effect of different alcohols on the distribution of silicate species is investigated. The results obtained show that distribution of these species is affected by the presence of alcohols and that maximum variations in this distribution are observed in the presence of methanol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. A. Corma, Chem. Rev. 97, 2373–2379 (1997)

    Article  Google Scholar 

  2. R.K. Harris, C.T.G. Knight, J. Chem. Soc., Faraday Trans. 79, 1525–1538 (1983)

    Article  Google Scholar 

  3. S.D. Kinrade, C.T.G. Knight, D.L. Pole, R.T. Syvitski, Inorg. Chem. 37, 4272–4277 (1998)

    Article  Google Scholar 

  4. S.D. Kinrade, J.W.D. Nin, A.S. Schach, T.A. Sloan, K.L. Wilson, C.T.G. Knight, Science 285, 1542–1545 (1999)

    Article  Google Scholar 

  5. P.K. Dutta, D.C. Shieh, Appl. Spectrosc. 39, 343–346 (1985)

    Article  ADS  Google Scholar 

  6. W. Wieker, D. Hoebbel, Z. Anorg. Chem. 366, 139–151 (1969)

    Article  Google Scholar 

  7. C.W. Lentz, Inorg. Chem. 3, 574–579 (1964)

    Article  Google Scholar 

  8. E. Thilo, W. Wieker, H. Stade, Z. Anorg. Chem. 340, 261–267 (1965)

    Article  Google Scholar 

  9. R.F. Mortlock, A.T. Bell, C.J. Radke, J. Phys. Chem. 95, 7847–7851 (1991)

    Article  Google Scholar 

  10. S.D. Kinrade, T.W. Swaddle, Inorg. Chem. 27, 4259–4264 (1988)

    Article  Google Scholar 

  11. H.C. Marsmann, Z. Naturforsch. B 29, 495–502 (1974)

    Google Scholar 

  12. H. Koller, G. Engelhardt, J. Felsche, J. Chem. Soc.Chem. Commun. 43, 371–372 (1990)

    Article  Google Scholar 

  13. G. Engelhardt, D. Zeigan, H. Jancke, D. Hoebble, W. Wieker, Z. Anorg. Chem. 437, 252–259 (1975)

    Google Scholar 

  14. S.D. Kinrade, T.W. Swaddle, J. Chem. Soc., Chem. Commun. 10, 120–121 (1986)

    Google Scholar 

  15. A. Samadi-Maybodi, N. Goudarzi, Spectrochim. Acta. Part A 65, 753–758 (2006)

    Article  ADS  Google Scholar 

  16. A. Samadi-Maybodi, N. Goudarzi, Anal. Chim. Acta. 587, 149–157 (2007)

    Article  Google Scholar 

  17. A. Samadi-Maybodi, N. Goudarzi, C.W. Kirby, Y. Huang, J. Surfact. Deterg. 11, 49–54 (2008)

    Article  Google Scholar 

  18. A. Samadi-Maybodi, N. Goudarzi, Bull. Chem. Soc. Jpn. 80, 789–793 (2007)

    Article  Google Scholar 

  19. A. Samadi-Maybodi, N. Goudarzi, H. Naderi-Manesh, Bull. Chem. Soc. Jpn. 79, 276–281 (2006)

    Article  Google Scholar 

  20. A. Samadi-Maybodi, N. Goudarzi, H.R. Bijanzadeh, J. Solut. Chem. 34, 283–295 (2005)

    Article  Google Scholar 

  21. N. Goudarzi, M. Goodarzi, M. Arab Chamjangali, G. Bagherian, J. Mol. Struct. 930, 2–8 (2009)

    Article  ADS  Google Scholar 

  22. N. Goudarzi, M. Arab Chamjangali, G. Bagherian, Spect. Lett. 42, 20–27 (2009)

    Article  ADS  Google Scholar 

  23. N. Goudarzi, M. Arab Chamjangali, G. Bagherian, J. Mol. Struct. 982, 127–132 (2010)

    Article  ADS  Google Scholar 

  24. G. Engelhardt, D. Michel, High-Resolution Solid-State NMR of Silicates and Zeolites (Wiley, New York, 1987), p. 435

    Google Scholar 

  25. R.K. Iler, The Chemistry of Silica (Wiley, New York, 1979)

    Google Scholar 

  26. R.M. Barrer, P.J. Denny, J. Chem. Soc. 2, 971–982 (1961)

    Google Scholar 

  27. E.K.F. Bahlmann, R.K. Harris, K. Metcalfe, J.W. Rockliffe, E.G. Smith, J. Chem. Soc., Faraday Trans. 93, 93–98 (1997)

    Article  Google Scholar 

  28. R.K. Harris, C.T.G. Knight, J. Chem. Soc., Faraday Trans. 79, 1539–1561 (1983)

    Article  Google Scholar 

  29. C.T.G. Knight, J. Chem. Soc., Dalton Trans. 32, 1457–1460 (1988)

    Article  Google Scholar 

  30. R.K. Harris, J. Parkinson, A. Samadi-Maybodi, J. Chem. Soc. Dalton Trans. 24, 2533–2534 (1997)

    Google Scholar 

  31. W.M. Hendricks, A.T. Bell, C.J. Radke, J. Phys. Chem. 95, 9519–9524 (1991)

    Article  Google Scholar 

  32. C. Tsonopoulos, Fluid Phase Equilib. 156, 21–33 (1999)

    Article  Google Scholar 

  33. R.F. Mortlock, A.T. Belland, C.J. Radke, J. Phys. Chem. 95, 372–378 (1991)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nasser Goudarzi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goudarzi, N. Silicon-29 NMR Spectroscopy Study of the Effect of Tetraphenylammonium (TPA) as a Template on Distribution of Silicate Species on Alkaline Aqueous and Alcoholic Silicate Solutions. Appl Magn Reson 44, 469–478 (2013). https://doi.org/10.1007/s00723-012-0394-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-012-0394-x

Keywords

Navigation