Skip to main content
Log in

Photo-Induced Electron Spin Polarization in Chemical and Biological Reactions: Probing Structure and Dynamics of Transient Intermediates by Multifrequency EPR Spectroscopy

  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

In this minireview, modern multifrequency electron paramagnetic resonance (EPR) spectroscopy, in particular, at high magnetic fields, is shown to provide detailed information about structure, motional dynamics and spin chemistry of transient radicals and radical pairs occurring in photochemical reactions. Examples discussed comprise spin-polarized radicals and radical pairs in disordered systems, such as ultraviolet-irradiated quinone and ketone compounds in fluid alcohol solutions, green-light initiated electron transfer in biomimetic porphyrin–quinone donor–acceptor model systems in frozen solution, aiming at artificial photosynthesis, and red-light initiated electron transfer in natural photosynthetic reaction-center protein complexes. The transient paramagnetic states exhibit characteristic electron polarization (CIDEP) effects originating from a triplet mechanism, a radical-pair mechanism or a correlated coupled radical-pair mechanism. They contain valuable information about structure and dynamics of the short-lived reaction intermediates. Moreover, the CIDEP effects can be exploited for signal enhancement. Continuous-wave and pulsed versions of time-resolved high-field EPR spectroscopy, such as transient EPR and electron spin-echo experiments, are compared with respect to their advantages and limitations for the specific photoreaction under study. Furthermore, orientation resolving W-band pulsed electron-electron double resonance (PELDOR) experiments on the spin-correlated coupled radical pair \( {\text{P}}_{865}^{ \cdot + } \) \( {\text{Q}}_{\text{A}}^{ \cdot - } \) in frozen solution reaction centers from the purple photosynthetic bacterium Rb. sphaeroides reveal details of distance and orientation of the pair partners in their charge-separated transient state. The results are compared with those of the ground-state P865QA. In conjunction with Q-band proton electron-nuclear double resonance (ENDOR) experiments the W-band PELDOR results provide decisive evidence that the local structure of the QA binding site does not change under photoreduction of the quinone—in agreement with earlier FTIR studies. The examples given demonstrate that multifrequency EPR experiments on disordered systems add heavily to the capabilities of “classical” spectroscopic and diffraction techniques for determining structure–dynamics–function relations of biochemical processes, since short-lived intermediates can be observed in real time while staying in their working states at biologically relevant time scales.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. R.Z. Sagdeev, W. Möhl, K. Möbius, J. Phys. Chem. 87, 3183–3186 (1983)

    Google Scholar 

  2. R.Z. Sagdeev, A.Z. Gogolev, I.A. Grigoriev, G.I. Shchukin, L.B. Volodarsky, W. Möhl, K. Möbius, Chem. Phys. Lett. 105, 223–227 (1984)

    ADS  Google Scholar 

  3. J. Schlüpmann, K. Salikhov, M. Plato, P. Jaegermann, F. Lendzian, K. Möbius, Appl. Magn. Reson. 2, 117–142 (1991)

    Google Scholar 

  4. A.A. Doubinskii, Y.S. Lebedev, K.M. Salikhov, K. Möbius, Appl. Magn. Reson. 13, 459–471 (1997)

    Google Scholar 

  5. K.M. Salikhov, J. Schlüpmann, M. Plato, K. Möbius, Chem. Phys. 215, 23–35 (1997)

    Google Scholar 

  6. A.A. Dubinskii, M. Huber, Y. Grishin, K. Möbius, Appl. Magn. Reson. 9, 229–250 (1995)

    Google Scholar 

  7. Y. Grishin, C.W.M. Kay, A.A. Doubinskii, K. Möbius, Appl. Magn. Reson. 13, 387–392 (1997)

    Google Scholar 

  8. A.A. Dubinskii, Y.A. Grishin, A.N. Savitsky, K. Möbius, Appl. Magn. Reson. 22, 369–386 (2002)

    Google Scholar 

  9. Y.A. Grishin, M.R. Fuchs, A. Schnegg, A.A. Dubinskii, B.S. Dumesh, F.S. Rusin, V.L. Bratman, K. Möbius, Rev. Sci. Instrum. 75, 2926–2936 (2004)

    ADS  Google Scholar 

  10. C.W.M. Kay, Y.A. Grishin, S. Weber, K. Möbius, Appl. Magn. Reson. 31, 599–609 (2007)

    Google Scholar 

  11. A. Savitsky, A.A. Dubinskii, M. Plato, Y.A. Grishin, H. Zimmermann, K. Möbius, J. Phys. Chem. B 112, 9079–9090 (2008)

    Google Scholar 

  12. D.N. Polovyanenko, E.G. Bagryanskaya, A. Schnegg, K. Möbius, A.W. Coleman, G.S. Ananchenko, K.A. Udachin, J.A. Ripmeester, Phys. Chem. Chem. Phys. 10, 5299–5307 (2008)

    Google Scholar 

  13. E.G. Bagryanskaya, D. Bardelang, S. Chenesseau, J.-P. Finet, L. Jicsinszky, H. Karoui, S.R.A. Marque, K. Möbius, D. Polovyanenko, A. Savitsky, P. Tordo, Appl. Magn. Reson. 36, 181–194 (2009)

    Google Scholar 

  14. E.G. Bagryanskaya, D.N. Polovyanenko, M.V. Fedin, L. Kulik, A. Schnegg, A. Savitsky, K. Möbius, A.W. Coleman, G.S. Ananchenko, J.A. Ripmeester, Phys. Chem. Chem. Phys. 11, 6700–6707 (2009)

    Google Scholar 

  15. E.P. Kirilina, T.F. Prisner, M. Bennati, B. Endeward, S.A. Dzuba, M.R. Fuchs, K. Möbius, A. Schnegg, Magn. Reson. Chem. 43, S119–S129 (2005)

    Google Scholar 

  16. A. Schnegg, A.A. Dubinskii, M.R. Fuchs, Y.A. Grishin, E.P. Kirilina, W. Lubitz, M. Plato, A. Savitsky, K. Möbius, Appl. Magn. Reson. 31, 59–98 (2007)

    Google Scholar 

  17. P.J. Hore, C.G. Joslin, K.A. McLauchlan, in Electron Spin Resonance, vol. 5, ed. by P.B. Ayscough (The Chemical Society, London, 1979), pp. 1–45

  18. K.M. Salikhov, Magnetic Isotope Effect in Radical Reactions: An Introduction (Springer, Wien, 1996)

    Google Scholar 

  19. F. Lendzian, P. Jaegermann, K. Möbius, Chem. Phys. Lett. 120, 195–200 (1985)

    ADS  Google Scholar 

  20. J. Kurreck, D. Niethammer, H. Kurreck, Chem. unserer Zeit 33, 72–83 (1999)

    Google Scholar 

  21. H. Levanon, K. Möbius, Annu. Rev. Biophys. Biomol. Struct. 26, 495–540 (1997)

    Google Scholar 

  22. M. Flores, A. Savitsky, M.L. Paddock, E.C. Abresch, A.A. Dubinskii, M.Y. Okamura, W. Lubitz, K. Möbius, J. Phys. Chem. B 114, 16894–16901 (2010)

    Google Scholar 

  23. A. Savitsky, A.A. Dubinskii, M. Flores, W. Lubitz, K. Möbius, J. Phys. Chem. B 111, 6245–6262 (2007)

    Google Scholar 

  24. K.M. Salikhov, Y.N. Molin, R.Z. Sagdeev, A.L. Buchachenko, Spin Polarization and Magnetic Effects in Radical Reactions (Elsevier, Amsterdam, 1984)

    Google Scholar 

  25. J.H. Van der Waals, M.S. de Groot, in The Triplet State, ed. by A.B. Zahlan (Cambridge Univ. Press, Cambridge, 1967), p. 101

  26. S. Yamauchi, D.W. Pratt, Mol. Phys. 37, 541–569 (1979)

    ADS  Google Scholar 

  27. S.K. Wong, D.A. Hutchinson, J.K.S. Wan, J. Chem. Phys. 58, 985–989 (1973)

    ADS  Google Scholar 

  28. F.J. Adrian, J. Chem. Phys. 61, 4875–4879 (1974)

    ADS  Google Scholar 

  29. P.W. Atkins, G.T. Evans, Mol. Phys. 27, 1633–1644 (1974)

    ADS  Google Scholar 

  30. P.W. Atkins, G.T. Evans, Chem. Phys. Lett. 25, 108–110 (1974)

    ADS  Google Scholar 

  31. J.B. Pedersen, J.H. Freed, J. Chem. Phys. 62, 1706–1711 (1975)

    ADS  Google Scholar 

  32. P.W. Atkins, K.A. McLauchlan, A.R. Lepley, G.L. Closs, in Chemically Induced Magnetic Polarization, ed. by A.R. Lepley, G.L. Closs (Wiley, New York, 1973)

  33. F.J. Adrian, J. Chem. Phys. 54, 3918–3923 (1971)

    ADS  Google Scholar 

  34. F.J. Adrian, Res. Chem. Intermed. 16, 99–125 (1991)

    Google Scholar 

  35. J.H. Freed, J.B. Pedersen, in Advances in Magnetic Resonance, vol. 8, ed. by J.S. Waugh (Academic Press, New York, 1976), pp. 1–80

  36. L. Monchick, F.J. Adrian, J. Chem. Phys. 68, 4376–4383 (1978)

    ADS  Google Scholar 

  37. J.B. Pedersen, J.H. Freed, J. Chem. Phys. 59, 2869–2885 (1973)

    ADS  Google Scholar 

  38. J.B. Pedersen, J.H. Freed, J. Chem. Phys. 58, 2746–2761 (1973)

    ADS  Google Scholar 

  39. A.I. Shushin, J.B. Pedersen, L.I. Lolle, Chem. Phys. 177, 119–131 (1993)

    Google Scholar 

  40. F.J. Adrian, Chem. Phys. Lett. 80, 106–110 (1981)

    ADS  Google Scholar 

  41. A.I. Shushin, Chem. Phys. 144, 201–222 (1990)

    ADS  Google Scholar 

  42. A.I. Shushin, Chem. Phys. 144, 223–239 (1990)

    ADS  Google Scholar 

  43. T.J. Burkey, J. Lusztyk, K.U. Ingold, J.K.S. Wan, F.J. Adrian, J. Phys. Chem. 89, 4286–4291 (1985)

    Google Scholar 

  44. A.D. Trifunac, Chem. Phys. Lett. 49, 457–458 (1977)

    ADS  Google Scholar 

  45. S.R. Shakirov, P.A. Purtov, Y.A. Grishin, E.G. Bagryanskaya, Mol. Phys. 104, 1739–1749 (2006)

    ADS  Google Scholar 

  46. P.J. Hore, in Advanced EPR, Applications in Biology and Biochemistry, ed. by A.J. Hoff (Elsevier, Amsterdam, 1989), pp. 405–440

  47. D. Stehlik, A. Van der Est, A. Kamlowski, Mol. Phys. Rep. 13, 21–36 (1996)

    Google Scholar 

  48. M. Fuhs, G. Elger, A. Osintsev, A. Popov, H. Kurreck, K. Möbius, Mol. Phys. 98, 1025–1040 (2000)

    ADS  Google Scholar 

  49. A.J. Hoff, in The Photosynthetic Reaction Center, vol. 2, ed. by J. Deisenhofer, J.R. Norris (Academic, San Diego, 1993), pp. 331–386

  50. A.J. Hoff, J. Deisenhofer, Phys. Rep. 287, 2–247 (1997)

    ADS  Google Scholar 

  51. H. Levanon, K. Hasharoni, Prog. React. Kinet. 20, 309–346 (1995)

    Google Scholar 

  52. H. van Willigen, P.R. Levstein, M.H. Ebersole, Chem. Rev. 93, 173–197 (1993)

    Google Scholar 

  53. A. Schweiger, G. Jeschke, Principles of Pulse Electron Paramagnetic Resonance (Oxford University Press, Oxford, 2001)

    Google Scholar 

  54. D. Goldfarb, in Electron Paramagnetic Resonance, vol. 15, ed. by B.C. Gilbert, N.M. Atherton, M.J. Davies (Royal Society of Chemistry, Cambridge, 1996), pp. 182–243

  55. A. Savitsky, K. Möbius, Helv. Chim. Acta 89, 2544–2589 (2006)

    Google Scholar 

  56. M.M. Dorio, J.H. Freed, Multiple Electron Resonance Spectroscopy (Plenum Press, New York, 1979)

    Google Scholar 

  57. K. Möbius, M. Plato, W. Lubitz, Phys. Rep. 87, 171–208 (1982)

    ADS  Google Scholar 

  58. L.T. Muus, P.W. Atkins, K.A. McLauchlan, J.B. Pedersen (eds.), Chemically Induced Magnetic Polarisation (D. Reidel, Dordrecht, 1977)

  59. L.T. Muus, S. Frydkjaer, K.B. Nielsen, Chem. Phys. 30, 163–168 (1978)

    Google Scholar 

  60. H. Paul, H. Fischer, Helv. Chim. Acta 56, 1575–1594 (1973)

    Google Scholar 

  61. H. Langhals, H. Fischer, Chem. Ber. 111, 543–553 (1978)

    Google Scholar 

  62. A.I. Grant, K.A. McLauchlan, Chem. Phys. Lett. 101, 120–125 (1983)

    ADS  Google Scholar 

  63. R. Baer, H. Paul, Chem. Phys. 87, 73–80 (1984)

    ADS  Google Scholar 

  64. D. Gust, T.A. Moore, Science 244, 35–41 (1989)

    ADS  Google Scholar 

  65. D. Gust, T.A. Moore, A.L. Moore, in Artificial Photosynthesis, ed. by A.F. Collings, C. Critchley (Wiley-VCH, Weinheim, 2005), pp. 187–210

  66. M. Di Valentin, A. Bisol, G. Agostini, P.A. Liddell, G. Kodis, A.L. Moore, T.A. Moore, D. Gust, D. Carbonera, J. Phys. Chem. B 109, 14401–14409 (2005)

    Google Scholar 

  67. R.E. Palacios, G. Kodis, S.L. Gould, L. de la Garza, A. Brune, D. Gust, T.A. Moore, A.L. Moore, Chem. Phys. Chem. 6, 2359–2370 (2005)

    Google Scholar 

  68. G. Kodis, Y. Terazono, P.A. Liddell, J. Andreasson, V. Garg, M. Hambourger, T.A. Moore, A.L. Moore, D. Gust, J. Am. Chem. Soc. 128, 1818–1827 (2006)

    Google Scholar 

  69. Y. Terazono, G. Kodis, P.A. Liddell, V. Garg, M. Gervaldo, T.A. Moore, A.L. Moore, D. Gust, Photochem. Photobiol. 83, 464–469 (2007)

    Google Scholar 

  70. K. Hasharoni, H. Levanon, S.R. Greenfield, D.J. Gosztola, W.A. Svec, M.R. Wasielewski, J. Am. Chem. Soc. 118, 10228–10235 (1996)

    Google Scholar 

  71. M.R. Wasielewski, Acc. Chem. Res. 42, 1910–1921 (2009)

    Google Scholar 

  72. T. Miura, R. Carmieli, M.R. Wasielewski, J. Phys. Chem. A 114, 5769–5778 (2010)

    Google Scholar 

  73. D. Gust, T.A. Moore, A.L. Moore, Acc. Chem. Res. 34, 40–48 (2001)

    Google Scholar 

  74. D.M. Guldi, Pure Appl. Chem. 75, 1069–1075 (2003)

    Google Scholar 

  75. J. Jortner, M. Bixon (eds.), Electron Transfer—From Isolated Molecules to Biomolecules. Part 1–2, Advances in Chemical Physics, vol. 106–107, (John Wiley, New York, 1999)

  76. R.A. Marcus, J. Chem. Phys. 24, 966–978 (1956)

    ADS  Google Scholar 

  77. H. Fröhlich, Theory of Dielectrics (Oxford Univ. Press, Oxford, 1990)

    Google Scholar 

  78. M. Bixon, J. Fajer, G. Feher, J.H. Freed, D. Gamliel, A.J. Hoff, H. Levanon, K. Möbius, R. Nechushtai, J.R. Norris, A. Scherz, J.L. Sessler, D. Stehlik, Isr. J. Chem. 32, 369–518 (1992)

    Google Scholar 

  79. F. Lendzian, B. von Maltzan, Chem. Phys. Lett. 180, 191–197 (1991)

    ADS  Google Scholar 

  80. K. Hasharoni, H. Levanon, J. Phys. Chem. 99, 4875–4878 (1995)

    Google Scholar 

  81. E.A. Weiss, M.A. Ratner, M.R. Wasielewski, J. Phys. Chem. A 107, 3639–3647 (2003)

    Google Scholar 

  82. M. Volk, T. Häberle, R. Feick, A. Ogrodnik, M.E. Michel-Beyerle, J. Phys. Chem. 97, 9831–9836 (1993)

    Google Scholar 

  83. M. Di Valentin, A. Bisol, G. Agostini, M. Fuhs, P.A. Liddell, A.L. Moore, T.A. Moore, D. Gust, D. Carbonera, J. Am. Chem. Soc. 126, 17074–17086 (2004)

    Google Scholar 

  84. T. Yago, Y. Kobori, K. Akiyama, S. Tero-Kubota, J. Phys. Chem. B 106, 10074–10081 (2002)

    Google Scholar 

  85. R. Calvo, E.C. Abresch, R. Bittl, G. Feher, W. Hofbauer, R.A. Isaacson, W. Lubitz, M.Y. Okamura, M.L. Paddock, J. Am. Chem. Soc. 122, 7327–7341 (2000)

    Google Scholar 

  86. M. Di Valentin, A. Bisol, G. Agostini, D. Carbonera, J. Chem. Inf. Model 45, 1580–1588 (2005)

    Google Scholar 

  87. P.W. Anderson, Phys. Rev. 115, 2–13 (1959)

    MathSciNet  ADS  MATH  Google Scholar 

  88. M. Asano-Someda, H. Levanon, J.L. Sessler, R.Z. Wang, Mol. Phys. 95, 935–942 (1998)

    ADS  Google Scholar 

  89. A. Berg, Z. Shuali, M. Asano-Someda, H. Levanon, M. Fuhs, K. Möbius, J. Am. Chem. Soc. 121, 7433–7434 (1999)

    Google Scholar 

  90. G.P. Wiederrecht, W.A. Svec, M.R. Wasielewski, T. Galili, H. Levanon, J. Am. Chem. Soc. 122, 9715–9722 (2000)

    Google Scholar 

  91. F. Lendzian, J. Schlüpmann, J. von Gersdorff, K. Möbius, H. Kurreck, Angew. Chem. Int. Ed. 30, 1461–1463 (1991)

    Google Scholar 

  92. N.I. Avdievich, M.D.E. Forbes, J. Phys. Chem. 99, 9660–9667 (1995)

    Google Scholar 

  93. G.L. Closs, M.D.E. Forbes, J. Phys. Chem. 95, 1924–1933 (1991)

    Google Scholar 

  94. M.D.E. Forbes, N.I. Avdievich, J.D. Ball, G.R. Schulz, J. Phys. Chem. 100, 13887–13891 (1996)

    Google Scholar 

  95. B. Chance, M. Nishimura, Proc. Natl. Acad. Sci. USA 46, 19–24 (1960)

    ADS  Google Scholar 

  96. M. Bixon, J. Jortner, J. Chem. Phys. 107, 5154–5170 (1997)

    ADS  Google Scholar 

  97. C.C. Moser, C.C. Page, X. Chen, P.L. Dutton, J. Biol. Inorg. Chem. 2, 393–398 (1997)

    Google Scholar 

  98. J.J. Regan, J.N. Onuchic, in The Reaction Centers of Photosynthetic Bacteria, ed. by M.E. Michel-Beyerle (Springer, Berlin, 1996), pp. 117–131

  99. S.S. Skourtis, J.N. Onuchic, D.N. Beratan, Inorg. Chim. Acta 243, 167–175 (1996)

    Google Scholar 

  100. A. Berman, E.S. Izraeli, H. Levanon, B. Wang, J.L. Sessler, J. Am. Chem. Soc. 117, 8252–8257 (1995)

    Google Scholar 

  101. G. Elger, M. Fuhs, P. Müller, J. von Gersdorff, A. Wiehe, H. Kurreck, K. Möbius, Mol. Phys. 95, 1309–1323 (1998)

    ADS  Google Scholar 

  102. J.P. Sumida, P.A. Liddell, S. Lin, A.N. Macpherson, G.R. Seely, A.L. Moore, T.A. Moore, D. Gust, J. Phys. Chem. A 102, 5512–5519 (1998)

    Google Scholar 

  103. R.A. Marcus, Pure Appl. Chem. 69, 13–29 (1997)

    Google Scholar 

  104. S.S. Skourtis, D.N. Beratan, in Electron Transfer-from Isolated Molecules to Biomolecules, Part 1 ed. by J. Jortner, M. Bixon. Advances in Chemical Physics (John Wiley, New York, 1999), pp. 377–452

  105. M.J. Therien, M. Selman, H.B. Gray, I.J. Chang, J.R. Winkler, J. Am. Chem. Soc. 112, 2420–2422 (1990)

    Google Scholar 

  106. P.J.F. Derege, S.A. Williams, M.J. Therien, Science 269, 1409–1413 (1995)

    ADS  Google Scholar 

  107. G.L. Closs, M.D.E. Forbes, J.R. Norris, J. Phys. Chem. 91, 3592–3599 (1987)

    Google Scholar 

  108. R.H. Felton, in The Porphyrins, vol. 5, ed. by D. Dolphin (Academic Press, New York, 1978), p. 53

  109. K.-H. Hellwege (ed.), Landolt-Börnstein: Numerical Data and Functional Relationships in Science and Technology. New Series, Group II, Part d1, vol 9 (Springer, Berlin, 1980), p. 619

  110. T.F. Prisner, A. van der Est, R. Bittl, W. Lubitz, D. Stehlik, K. Möbius, Chem. Phys. 194, 361–370 (1995)

    Google Scholar 

  111. A. van der Est, T. Prisner, R. Bittl, P. Fromme, W. Lubitz, K. Möbius, D. Stehlik, J. Phys. Chem. B 101, 1437–1443 (1997)

    Google Scholar 

  112. K. Möbius, A. Savitsky, High-Field EPR Spectroscopy on Proteins and their Model Systems: Characterization of Transient Paramagnetic States (RSC Publishing, London, 2009)

    Google Scholar 

  113. M.H.B. Stowell, T.M. McPhillips, D.C. Rees, S.M. Soltis, E. Abresch, G. Feher, Science 276, 812–816 (1997)

    Google Scholar 

  114. J.P. Allen, G. Feher, T.O. Yeates, H. Komiya, D.C. Rees, Proc. Natl. Acad. Sci. USA 84, 5730–5734 (1987)

    ADS  Google Scholar 

  115. J.P. Allen, G. Feher, T.O. Yeates, H. Komiya, D.C. Rees, Proc. Natl. Acad. Sci. USA 84, 6162–6166 (1987)

    ADS  Google Scholar 

  116. A.J. Chirino, E.J. Lous, M. Huber, J.P. Allen, C.C. Schenck, M.L. Paddock, G. Feher, D.C. Rees, Biochemistry 33, 4584–4593 (1994)

    Google Scholar 

  117. U. Heinen, L.M. Utschig, O.G. Poluektov, G. Link, E. Ohmes, G. Kothe, J. Am. Chem. Soc. 129, 15935–15946 (2007)

    Google Scholar 

  118. W. Lubitz, Phys. Chem. Chem. Phys. 4, 5539–5545 (2002)

    Google Scholar 

  119. D. Kleinfeld, M.Y. Okamura, G. Feher, Biochemistry 23, 5780–5786 (1984)

    Google Scholar 

  120. J. Breton, C. Boullais, J.R. Burie, E. Nabedryk, C. Mioskowski, Biochemistry 33, 14378–14386 (1994)

    Google Scholar 

  121. S.G. Zech, R. Bittl, A.T. Gardiner, W. Lubitz, Appl. Magn. Reson. 13, 517–529 (1997)

    Google Scholar 

  122. I.V. Borovykh, S.A. Dzuba, I. Proskuryakov, P. Gast, A.J. Hoff, Biochim. Biophys. Acta 1363, 182–186 (1998)

    Google Scholar 

  123. E.C. Abresch, A.P. Yeh, S.M. Soltis, D.C. Rees, H.L. Axelrod, M.Y. Okamura, G. Feher, Biophys. J. 76, A141 (1999)

    Google Scholar 

  124. G. Katona, A. Snijder, P. Gourdon, U. Andreasson, O. Hansson, L.E. Andreasson, R. Neutze, Nat. Struct. Mol. Biol. 12, 630–631 (2005)

    Google Scholar 

  125. R.A. Isaacson, F. Lendzian, E.C. Abresch, W. Lubitz, G. Feher, Biophys. J. 69, 311–322 (1995)

    ADS  Google Scholar 

  126. O. Burghaus, M. Plato, M. Rohrer, K. Möbius, F. Macmillan, W. Lubitz, J. Phys. Chem. 97, 7639–7647 (1993)

    Google Scholar 

  127. R. Klette, J.T. Törring, M. Plato, K. Möbius, B. Bonigk, W. Lubitz, J. Phys. Chem. 97, 2015–2020 (1993)

    Google Scholar 

  128. M. Rohrer, M. Plato, F. MacMillan, Y. Grishin, W. Lubitz, K. Möbius, J. Magn. Reson. A 116, 59–66 (1995)

    Google Scholar 

Download references

Acknowledgments

We thank the supporting pillars of the Novosibirsk–Kazan–Berlin–Mülheim cooperation quadrangle, that were crucial for enabling enduring scientific cooperations and personal friendships over so many years, for their enthusiasm and perseverance, sometimes under difficult political and financial constraints. On the Novosibirsk side, the people deserving this credit were Yuri Molin, Renad Sagdeev and Kev Salikhov right from the beginning, later joined by Yuri Tsvetkov and Sergei Dzuba. On the Berlin side they were Dietmar Stehlik, Harry Kurreck, Hans-Martin Vieth as well as W.L. and K.M. Naturally, our cooperation quadrangle profited strongest from the enthusiastic scientific co-workers. As representative examples we mention Yuri Grishin (Novosibirsk) for his enduring technical support and Martin Plato (Berlin) for his expert quantum chemical data analysis. The work at the FU Berlin and, later, at the Max-Planck Institute in Mülheim has received sustaining support by the Deutsche Forschungsgemeinschaft (DFG) in the frame of the Collaborative Research Centers SFB 161, SFB 337, SFB 498, of the Priority Program SPP 1051 as well as by the Group Project MO 132/19-2. We gratefully acknowledge financial and administrative support by the FU Berlin and the Max-Planck Society.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anton Savitsky.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Möbius, K., Lubitz, W. & Savitsky, A. Photo-Induced Electron Spin Polarization in Chemical and Biological Reactions: Probing Structure and Dynamics of Transient Intermediates by Multifrequency EPR Spectroscopy. Appl Magn Reson 41, 113–143 (2011). https://doi.org/10.1007/s00723-011-0284-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-011-0284-7

Keywords

Navigation