Skip to main content
Log in

Neue Behandlungsprotokolle der Hornhautvernetzung (Corneal Crosslinking)

New treatment protocols for corneal crosslinking

  • themenschwerpunkt
  • Published:
Spektrum der Augenheilkunde Aims and scope Submit manuscript

Zusammenfassung

In den letzten Jahren hat sich die Hornhautvernetzung (Corneal Crosslinking/CXL) zur Behandlung von ektatischen Hornhauterkrankungen in der Hornhautchirurgie etabliert. Die Effektivität dieses Eingriffs konnte in zahlreichen Studien belegt werden. Rezent wurden unterschiedliche Behandlungsprotokolle vorgestellt, welche die Sicherheit durch eine transepitheliale Behandlung verbessern sollen. Ebenso wurden beschleunigte Verfahren vorgestellt, um die Behandlungsdauer signifikant zu reduzieren. In dieser Übersichtsarbeit werden transepitheliale Behandlungsprotokolle sowie beschleunigte Behandlungsprotokolle beschrieben und der Stand der Evidenz beurteilt.

Abstract

In the recent years corneal crosslinking has been established as a routine treatment for progressive ectatic corneal diseases. The effectiveness and safety of this intervention has been proven in several trials. Recently, several new treatment protocols have been introduced with the intention to reduce treatment time or the necessity to remove the epithelium. This overview describes some of this new treatment protocols and tries to assess the research evidence in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1

Literatur

  1. Gokhale NS. Epidemiology of keratoconus. Indian J Ophthalmol. 2013;61(8):382–3.

    Article  PubMed Central  PubMed  Google Scholar 

  2. Wagner H, Barr JT, Zadnik K. Collaborative longitudinal evaluation of keratoconus (CLEK) Study: methods and findings to date. Cont Lens Anterior Eye. 2007;30(4):223–32.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. McMahon TT, et al. Longitudinal changes in corneal curvature in keratoconus. Cornea. 2006;25(3):296–305.

    Article  PubMed  Google Scholar 

  4. Sporl E, et al. [Increased rigidity of the cornea caused by intrastromal cross-linking]. Ophthalmologe. 1997;94(12):902–6.

    Article  CAS  PubMed  Google Scholar 

  5. Schmut O, et al. Die Therapie des Keratokonus mit Riboflavin und UV-A-Licht – biochemische Aspekte. Spektrum der Augenheilkunde. 2009;23(5):337–42.

    Article  Google Scholar 

  6. Wollensak G, Sporl E, Seiler T. [Treatment of keratoconus by collagen cross linking]. Ophthalmologe. 2003;100(1):44–9.

    Article  CAS  PubMed  Google Scholar 

  7. Wollensak G, Spoerl E, Seiler T. Stress-strain measurements of human and porcine corneas after riboflavin-ultraviolet-A-induced cross-linking. J Cataract Refract Surg. 2003;29(9):1780–5.

    Article  PubMed  Google Scholar 

  8. Spoerl E, et al. Safety of UVA-riboflavin cross-linking of the cornea. Cornea. 2007;26(4):385–9.

    Article  PubMed  Google Scholar 

  9. Iseli HP, et al. Efficacy and safety of blue-light scleral cross-linking. J Refract Surg. 2008;24(7):752–5.

    Google Scholar 

  10. Asri D, et al. Corneal collagen crosslinking in progressive keratoconus: multicenter results from the French National Reference Center for Keratoconus. J Cataract Refract Surg. 2011;37(12):2137–43.

    Article  PubMed  Google Scholar 

  11. Hersh PS, Greenstein SA, Fry KL. Corneal collagen crosslinking for keratoconus and corneal ectasia: one-year results. J Cataract Refract Surg. 2011;37(1):149–60.

    Article  PubMed  Google Scholar 

  12. Caporossi A, et al. Long-term results of riboflavin ultraviolet a corneal collagen cross-linking for keratoconus in Italy: the Siena eye cross study. Am J Ophthalmol. 2010;149(4):585–93.

    Article  CAS  PubMed  Google Scholar 

  13. Wittig-Silva C, et al. A randomized controlled trial of corneal collagen cross-linking in progressive keratoconus: preliminary results. J Refract Surg. 2008;24(7):720–5.

    Google Scholar 

  14. Goldich Y, et al. Clinical and corneal biomechanical changes after collagen cross-linking with riboflavin and UV irradiation in patients with progressive keratoconus: results after 2 years of follow-up. Cornea. 2012;31(6):609–14.

    Article  PubMed  Google Scholar 

  15. Koller T, Mrochen M, Seiler T. Complication and failure rates after corneal crosslinking. J Cataract Refract Surg. 2009;35(8):1358–62.

    Article  PubMed  Google Scholar 

  16. Perez-Santonja JJ, et al. Microbial keratitis after corneal collagen crosslinking. J Cataract Refract Surg. 2009;35(6):1138–40.

    Article  PubMed  Google Scholar 

  17. Pollhammer M, Cursiefen C. Bacterial keratitis early after corneal crosslinking with riboflavin and ultraviolet-A. J Cataract Refract Surg. 2009;35(3):588–9.

    Article  PubMed  Google Scholar 

  18. Faschinger C, Kleinert R, Wedrich A. [Corneal melting in both eyes after simultaneous corneal cross-linking in a patient with keratoconus and Down syndrome]. Ophthalmologe. 2010;107(10):951–2, 954–5.

    Article  CAS  PubMed  Google Scholar 

  19. Seiler TG, et al. [Complications of corneal cross-linking]. Ophthalmologe. 2013;110(7):639–44.

    Article  CAS  PubMed  Google Scholar 

  20. Baiocchi S, et al. Corneal crosslinking: riboflavin concentration in corneal stroma exposed with and without epithelium. J Cataract Refract Surg. 2009;35(5):893–9.

    Article  PubMed  Google Scholar 

  21. Grass GM, Wood RW, Robinson JR. Effects of calcium chelating agents on corneal permeability. Invest Ophthalmol Vis Sci. 1985;26(1):110–3.

    CAS  PubMed  Google Scholar 

  22. Raiskup F, Pinelli R, Spoerl E. Riboflavin osmolar modification for transepithelial corneal cross-linking. Curr Eye Res. 2012;37(3):234–8.

    Article  CAS  PubMed  Google Scholar 

  23. Mastropasqua L, et al. Corneal cross-linking: intrastromal riboflavin concentration in iontophoresis-assisted imbibition versus traditional and transepithelial techniques. Am J Ophthalmol. 2014;157(3):623–30 e1.

    Article  CAS  PubMed  Google Scholar 

  24. Hayes S, et al. Effect of complete epithelial debridement before riboflavin-ultraviolet-A corneal collagen crosslinking therapy. J Cataract Refract Surg. 2008;34(4):657–61.

    Article  PubMed  Google Scholar 

  25. Wollensak G, Iomdina E. Biomechanical and histological changes after corneal crosslinking with and without epithelial debridement. J Cataract Refract Surg. 2009;35(3):540–6.

    Article  PubMed  Google Scholar 

  26. Mastropasqua L, et al. Morphological modification of the cornea after standard and transepithelial corneal cross-linking as imaged by anterior segment optical coherence tomography and laser scanning in vivo confocal microscopy. Cornea. 2013;32(6):855–61.

    Article  PubMed  Google Scholar 

  27. Caporossi A, et al. Transepithelial corneal collagen crosslinking for keratoconus: qualitative investigation by in vivo HRT II confocal analysis. Eur J Ophthalmol. 2012;22(Suppl 7):81–8.

    Article  Google Scholar 

  28. Touboul D, et al. Corneal confocal microscopy following conventional, transepithelial, and accelerated corneal collagen cross-linking procedures for keratoconus. J Refract Surg. 2012;28(11):769–76.

    Article  PubMed  Google Scholar 

  29. Mencucci R, et al. Transepithelial riboflavin/ultraviolet. a corneal cross-linking in keratoconus: morphologic studies on human corneas. Am J Ophthalmol. 2013;156(5):874–84 e1.

    Article  CAS  PubMed  Google Scholar 

  30. Filippello M, Stagni E, O’Brart D. Transepithelial corneal collagen crosslinking: bilateral study. J Cataract Refract Surg. 2012. 38(2):283–91.

    Article  PubMed  Google Scholar 

  31. Filippello M, et al. Transepithelial cross-linking in keratoconus patients: confocal analysis. Optom Vis Sci. 2012;89(10):e1–7.

    Article  PubMed  Google Scholar 

  32. Salman AG. Transepithelial corneal collagen crosslinking for progressive keratoconus in a pediatric age group. J Cataract Refract Surg. 2013;39(8):1164–70.

    Article  PubMed  Google Scholar 

  33. Magli A, et al. Epithelium-off corneal collagen cross-linking versus transepithelial cross-linking for pediatric keratoconus. Cornea. 2013;32(5):597–601.

    Article  PubMed  Google Scholar 

  34. Caporossi A, et al. Transepithelial corneal collagen crosslinking for progressive keratoconus: 24-month clinical results. J Cataract Refract Surg. 2013;39(8):1157–63.

    Article  PubMed  Google Scholar 

  35. Koppen C, et al. Refractive and topographic results of benzalkonium chloride-assisted transepithelial crosslinking. J Cataract Refract Surg. 2012;38(6):1000–5.

    Article  PubMed  Google Scholar 

  36. Buzzonetti L, Petrocelli G. Transepithelial corneal cross-linking in pediatric patients: early results. J Refract Surg. 2012;28(11):763–7.

    Article  PubMed  Google Scholar 

  37. Kocak I, et al. Comparison of transepithelial corneal collagen crosslinking with epithelium-off crosslinking in progressive keratoconus. J Fr Ophtalmol. 2014;37(5):371–6.

    Article  CAS  PubMed  Google Scholar 

  38. Acar BT, et al. Can the effect of transepithelial corneal col- 495 lagen cross-linking be improved by increasing the dura- 496 tion of topical riboflavin application? An in vivo confocal 497 microscopy study. Eye Contact Lens. 2014;40(4):207–12.

  39. Kymionis GD, et al. Evaluation of corneal stromal demarcation line depth following standard and a modified-accelerated collagen cross-linking protocol. Am J Ophthalmol. 2014;158(4):671–675.

  40. Arboleda A, et al. Evaluating in vivo delivery of riboflavin with coulomb-controlled iontophoresis for corneal collagen cross-linking: a pilot study. Invest Ophthalmol Vis Sci. 2014;55(4):2731–8.

    Article  CAS  PubMed  Google Scholar 

  41. Cassagne M, et al. Iontophoresis transcorneal delivery technique for transepithelial corneal collagen crosslinking with riboflavin in a rabbit model. Invest Ophthalmol Vis Sci. 2014 Mar 18. pii: iovs.13–12595v1. doi: 10.1167/iovs.13–12595.

  42. Bikbova G, Bikbov M. Transepithelial corneal collagen cross-linking by iontophoresis of riboflavin. Acta Ophthalmol. 2014;92(1):e30–4.

    Article  CAS  PubMed  Google Scholar 

  43. Kanellopoulos AJ. Collagen cross-linking in early keratoconus with riboflavin in a femtosecond laser-created pocket: initial clinical results. J Refract Surg. 2009;25(11):1034–7.

    Article  PubMed  Google Scholar 

  44. Daxer A, Mahmoud HA, Venkateswaran RS. Corneal crosslinking and visual rehabilitation in keratoconus in one session without epithelial debridement: new technique. Cornea. 2010;29(10):1176–9.

    Article  PubMed  Google Scholar 

  45. Wollensak G, et al. Biomechanical efficacy of collagen crosslinking in porcine cornea using a femtosecond laser pocket. Cornea. 2014;33(3):300–5.

    PubMed  Google Scholar 

  46. Alio JL, et al. Cross-linking in progressive keratoconus using an epithelial debridement or intrastromal pocket technique after previous corneal ring segment implantation. J Refract Surg. 2011;27(10):737–43.

    Article  PubMed  Google Scholar 

  47. Seiler TG, et al. Intrastromal application of riboflavin for corneal crosslinking. Invest Ophthalmol Vis Sci. 2014;55(7):4261–5.

    Article  CAS  PubMed  Google Scholar 

  48. Schmidinger G, Pachala M, Prager F. Pachymetry changes during corneal crosslinking: effect of closed eyelids and hypotonic riboflavin solution. J Cataract Refract Surg. 2013;39(8):1179–83.

    Article  PubMed  Google Scholar 

  49. Marshall J, HP Muller D. Corneal collagen cross-linking; past, present, future. 2013: Avedro, Inc.

  50. Jain V, Gazali Z, Bidayi R. Isotonic Riboflavin and HPMC with accelerated cross-linking protocol. Cornea. 2014;33(9):910–3.

  51. Bunsen RW, Roscoe H. Photochemical researches, part V: on the measurement of the chemical action of direct and diffuse sunlight. Proc R Soc Lond. 1862;12:306–12.

    Article  Google Scholar 

  52. Wernli J, et al. The efficacy of corneal cross-linking shows a sudden decrease with very high intensity UV light and short treatment time. Invest Ophthalmol Vis Sci. 2013;54(2):1176–80.

    Article  PubMed  Google Scholar 

  53. Schumacher S, Oeftiger L, Mrochen M. Equivalence of biomechanical changes induced by rapid and standard corneal cross-linking, using riboflavin and ultraviolet radiation. Invest Ophthalmol Vis Sci. 2011;52(12):9048–52.

    Article  PubMed  Google Scholar 

  54. Hammer A, et al. Corneal biomechanical properties at different corneal cross-linking (CXL) irradiances. Invest Ophthalmol Vis Sci. 2014;55(5):2881–4.

    Article  PubMed  Google Scholar 

  55. Tomita M, Mita M, Huseynova T. Accelerated versus conventional corneal collagen crosslinking. J Cataract Refract Surg. 2014;40(6):1013–20.

    Article  PubMed  Google Scholar 

  56. Mita M, Waring GOt, Tomita M. High-irradiance accelerated collagen crosslinking for the treatment of keratoconus: six-month results. J Cataract Refract Surg. 2014;40(6):1032–40.

    Article  PubMed  Google Scholar 

  57. Elbaz U, et al. Accelerated (9-mW/cm2) corneal collagen crosslinking for keratoconus-A 1-year follow-up. Cornea. 2014;33(8):769–73.

    Article  PubMed  Google Scholar 

  58. Gatzioufas Z, et al. Safety profile of high-fluence corneal collagen cross-linking for progressive keratoconus: preliminary results from a prospective cohort study. J Refract Surg. 2013;29(12):846–8.

    Article  PubMed  Google Scholar 

  59. Cinar Y, et al. Accelerated corneal collagen cross-linking for progressive keratoconus. Cutan Ocul Toxicol. 2014;33(2):168–71.

    Article  CAS  PubMed  Google Scholar 

  60. Cinar Y, et al. Comparison of accelerated and conventional corneal collagen cross-linking for progressive keratoconus. Cutan Ocul Toxicol. 2013;33(3):218–22.

  61. Koller T. Clinical results with an optimized beam-profile, in 9th International Congress of Corneal Cross-Linking. 2013: Dublin.

  62. Sel S, et al. UVA irradiation of riboflavin generates oxygen-dependent hydroxyl radicals. Redox Rep. 2014;19(2):72–9.

    Article  CAS  PubMed  Google Scholar 

  63. Richoz O, et al. The Biomechanical effect of corneal collagen cross-linking (CXL) with riboflavin and UV-A is oxygen dependent. Transl Vis Sci Technol. 2013;2(7):6.

    Article  PubMed Central  PubMed  Google Scholar 

  64. Kymionis GD, et al. Corneal stroma demarcation line after standard and high-intensity collagen crosslinking determined with anterior segment optical coherence tomography. J Cataract Refract Surg. 2014;40(5):736–40.

    Article  PubMed  Google Scholar 

  65. Mazzotta C, et al. Pulsed vs continuous light accelerated corneal collagen crosslinking: in vivo qualitative investigation by confocal microscopy and corneal OCT. Eye (Lond). 2014;28(10):1179–83.

Download references

Interessenkonflikt

Es besteht kein Interessenkonflikt.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerald Schmidinger.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schmidinger, G., Pircher, N. Neue Behandlungsprotokolle der Hornhautvernetzung (Corneal Crosslinking). Spektrum Augenheilkd. 29, 31–36 (2015). https://doi.org/10.1007/s00717-015-0257-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00717-015-0257-6

Schlüsselwörter

Keywords

Navigation