Skip to main content

Advertisement

Log in

Isotopic fractionation of oxygen and carbon in decomposed lower-mantle inclusions in diamond

  • Original Paper
  • Published:
Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Two carbonatitic mineral assemblages, calcite + wollastonite and calcite + monticellite, which are encapsulated in two diamond grains from the Rio Soriso basin in the Juina area, Mato Grosso State, Brazil, were studied utilizing the NanoSIMS technique. The assemblages were formed as the result of the decomposition of the lower-mantle assemblage calcite + CaSi-perovskite + volatile during the course of the diamond ascent under pressure conditions from 15 to less than 0.8 GPa. The oxygen and carbon isotopic compositions of the studied minerals are inhomogeneous. They fractionated during the process of the decomposition of primary minerals to very varying values: δ18O from −3.3 to +15.4 ‰ SMOW and δ13C from −2.8 to +9.3 ‰ VPDB. These values significantly extend the mantle values for these elements in both isotopically-light and isotopically-heavy areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Akaogi M, Yano M, Tejima Y, Iijima M, Kojitani H (2004) High-pressure transitions of diopside and wollastonite: phase equilibria and thermochemistry of CaMgSi2O6, CaSiO3 and CaSi2O5–CaTiSiO5 system. Phys Earth Planet Inter 143–144:145–156

    Article  Google Scholar 

  • Armstrong JP, Wilson MR, Barnett RL, Nowicki T, Kjarsgaard BA (2004) Mineralogy of primary carbonate-bearing hypabyssal kimberlite, Lac de Gras, Slave Province, Northwest Territories, Canada. Lithos 76:415–433

    Article  Google Scholar 

  • Brenker FE, Vollmer C, Vincze L, Vekemans B, Szymanski A, Janssens K, Szaloki I, Nasdala L, Kaminsky F (2007) Carbonates from the lower part of transition zone or even the lower mantle. Earth Planet Sci Lett 260:1–9

    Article  Google Scholar 

  • Buick IS, Gibson R, Wallmach T, Metz J (2000) The occurrence of cuspidine, foshagite and hillebrandite in calc-silcate xenoliths from the bushveld complex, South Africa. S Afr J Geol 103:249–254

    Article  Google Scholar 

  • Cartigny P (2005) Stable isotopes and the origin of diamond. Elements 1:79–84

    Article  Google Scholar 

  • Criss RE (2008) Terrestrial oxygen isotope variations and their implications for planetary lithospheres. Rev Mineral Geochem 68:511–526

    Article  Google Scholar 

  • Deines P, Harris JW, Robinson DN, Gurney JJ, Shee SR (1991) Carbon and oxygen isotope variations in diamond and graphite eclogites from Orapa, Botswana, and the nitrogen content of their diamonds. Geochim Cosmochim Acta 55:515–524

    Article  Google Scholar 

  • Dubrovinsky LS, Dubrovinskaia NA, Annersten H, Halenius E, Harryson H (2001) Stability of (Mg0.5Fe0.5)O and (Mg0.8 Fe0.2)O magnesiowüstites in the lower mantle. Eur J Mineral 13:857–861

    Article  Google Scholar 

  • Giuliani A, Phillips D, Kamenetsky VS, Fiorentini ML, Farquhar J, Kendrick MA (2014) Stable isotope (C, O, S) compositions of volatile-rich minerals in kimberlites: a review. Chem Geol 374–375:61–83

    Article  Google Scholar 

  • Harte B (2010) Diamond formation in the deep mantle: the record of mineral inclusions and their distribution in relation to mantle dehydration zones. Mineral Mag 74:189–215

    Article  Google Scholar 

  • Harte B, Hudson NFC (2013) Mineral associations in diamonds from the lowermost upper mantle and uppermost lower mantle. Spec Issue J Geol Soc India 1:235–254, Proceedings of the 10th International Kimberlite Conference, Vol. 1

    Google Scholar 

  • Harte B, Harris JW, Hutchison MT, Watt GR, Wilding MC (1999) Lower mantle mineral associations in diamonds from Sao Luiz, Brazil. In: Fei Y, Bertka CM, Mysen BO (eds), Mantle petrology: field observations and high pressure experimentation: a tribute to Francis R. (Joe) Boyd. Geochem Soc Spec Publ 6: 125–153

  • Ickert RB, Stachel T, Stern RA, Harris JW (2013) Diamond from recycled crustal carbon documented by coupled δ18O-δ13C measurements of diamonds and their inclusions. Earth Planet Inter 364:85–97

    Article  Google Scholar 

  • Jacob D, Jagoutz E, Lowry D, Mattey D, Kudrjavtseva G (1994) Diamondiferous eclogites from Siberia: remnants of archean oceanic crust. Geochim Cosmochim Acta 58:5191–5207

    Article  Google Scholar 

  • Jacob D, Jagoutz E, Lowry D, Zinngrebe E (1998) Comment on ‘the origins of Yakutian Eclogite Xenoliths’ by Snyder GA et al. J Petrol 39:1527–1533

    Article  Google Scholar 

  • Kaminsky FV (2012) Mineralogy of the lower mantle: a review of ‘super-deep’ mineral inclusions in diamond. Earth Sci Rev 110:127–147

    Article  Google Scholar 

  • Kaminsky FV, Sobolev NV (1985) Variations in carbon isotope composition within diamond crystals. Dokl Akad Nauk SSSR 285:1436–1439 (in Russian)

    Google Scholar 

  • Kaminsky FV, Wirth R (2011) Iron carbide inclusions in lower-mantle diamond from Juina, Brazil. Can Mineral 49:555–572

    Article  Google Scholar 

  • Kaminsky F, Wirth R, Matsyuk S, Schreiber A, Thomas R (2009) Nyerereite and nahcolite inclusions in diamond: evidence for lower-mantle carbonatitic magmas. Mineral Mag 73:797–816

    Article  Google Scholar 

  • Kaminsky FV, Ryabchikov ID, Wirth R (2015) A primary natrocarbonatitic association in the deep earth. Mineral Petrol. doi:10.1007/s00710-015-0368-4

    Google Scholar 

  • Klein-BenDavid O, Pearson DG, Nowell GM, Ottley C, McNeill JCR, Cartigny P (2010) Mixed fluid sources involved in diamond growth constrained by Sr–Nd–Pb–C–N isotopes and trace elements. Earth Planet Sci Lett 289:123–133

    Article  Google Scholar 

  • Kostrovitskii SI, Solov’eva LV, Gornova MA, Alymova NV, Yakovlev DA, Ignat’ev AV, Velivetskaya TA, Suvorova LF (2012) Oxygen isotope composition in minerals of mantle parageneses from Yakutian kimberlites. Transact (Dokl) Russ Acad Sci/Earth Sci Sect 444:579–584

    Google Scholar 

  • Kushiro I, Yoder HS (1964) Breakdown of monticellite and akermanite at high pressures. Year B Carnegie Inst Wash 63:81–83

    Google Scholar 

  • Lowry D, Mattey DP, Harris JW (1999) Oxygen isotope composition of syngenetic inclusions in diamond from the Finsch Mine, RSA. Geochim Cosmochim Acta 63:1825–1836

    Article  Google Scholar 

  • Mattey D, Lowry D, MacPherson C (1994) Oxygen isotope composition of mantle peridotite. Earth Planet Sci Lett 128:231–241

    Article  Google Scholar 

  • Page FZ, Bin Fu B, Kita NT, Fournelle J, Spicuzza MJ, Schulze DJ, Viljoen F, Basei MAS, Valley JW (2007) Zircons from kimberlite: New insights from oxygen isotopes, trace elements, and Ti in zircon thermometry. Geochim Cosmochim Acta 71:3887–3903

    Article  Google Scholar 

  • Palot MP, Cartigny P, Harris JW, Kaminsky FV, Stachel T (2012) Evidence for deep mantle convection and primordial heterogeneity from N and C stable isotopes in diamond. Earth Planet Sci Lett 357–358:179–193

    Article  Google Scholar 

  • Rampone E, Hofmann AW (2012) A global overview of isotopic heterogeneities in the oceanic mantle. Lithos 148:247–261

    Article  Google Scholar 

  • Rollion-Bard C, Marin-Carbonne J (2011) Determination of SIMS matrix effects on oxygen isotopic compositions in carbonates. J Analyt Atom Spectrom 26:1285–128

    Article  Google Scholar 

  • Schulze DJ, Harte B, Valley JW, Brenan JM, Channer DMDR (2003) Extreme ctustal oxygen isotope signatures preserved in coesite in diamond. Nature 423:68–70

    Article  Google Scholar 

  • Schulze D, Harte B, Page FZ, Valley JW, Channer DMDR, Jaques AL (2013) Anticorrelation between low δ13C of eclogitic diamonds and high δ18O of their coesite and garnet inclusions requires a subduction origin. Geology 41:455–458

    Article  Google Scholar 

  • Slodzian G, Hillion F, Stadermann FJ, Zinner E (2004) QSA influences on isotopic ratio measurements. Appl Surf Sci 231–232:874–877

    Article  Google Scholar 

  • Snyder GA, Taylor LA, Jerde EA, Clayton RN, Mayedo TK, Deines P, Rossman GR, Sobolev NV (1995) Archean mantle heterogeneity and the origin of diamondiferous eclogites, Siberia: evidence from stable isotopes and hydroxyl in garnet. Am Mineral 80:799–809

    Article  Google Scholar 

  • Sobolev NV, Galimov EM, Smith CB, Yefimova ES, Maltsev KA, Hall EE, Usova LV (1989) Morphology, inclusions and carbon isotopic composition of diamonds from the King George alluvial deposit and the Argyle lamproitic pipe, Western Australia. Russ Geol Geophys 12:3–18

    Google Scholar 

  • Spetsius ZV, Griffin WL, Taylor LA, O’Reilly SY, Mityukhin SI, Valley JW, Spicuzza M (2008) Trace elements and oxygen isotopes in garnets from diamondiferous xenoliths, Nurbinskaya pipe, Yakutia: implications for diamond genesis. 9th International Kimberlite Conference, Frankfurt (No. 9IKC-A-00140)

  • Srivastava RK, Heaman LM, Sinha AK, Shihua S (2005) Emplacement age and isotope geochemistry of Sung Valley alkaline–carbonatite complex, Shillong Plateau, northeastern India: Implications for primary carbonate melt and genesis of the associated silicate rocks. Lithos 81:33–54

    Article  Google Scholar 

  • Tappe S, Foley SF, Kjarsgaard BA, Romer RL, Heaman LM, Stracke A, Jenner GA (2008) Between carbonatite and lamproite - diamondiferous torngat ultramafic lamprophyres formed by carbonate-fluxed melting of cratonic MARID-type metasomes. Geochim Cosmochim Acta 72:3258–3286

    Article  Google Scholar 

  • Thomassot E, Cartigny P, Harris JW, Vilhoen KS (2007) Methane-related diamond crystallization in the Earth’s mantle: stable isotope evidences from a single diamond-bearing xenoliths. Earth Planet Sci Lett 257:362–371

    Article  Google Scholar 

  • Valley JW, Kita NT (2009) In situ oxygen isotope geochemistry by ion microprobe, In: Fayek M (ed) MAC short course: secondary ion mass spectrometry in the earth sciences, 41: 19–63

  • Valley JW, Kinny PD, Schulze DJ, Spicuzza MJ (1998) Zircon megacrysts from kimberlite: oxygen isotope variability among mantle melts. Contrib Mineral Petrol 133:1–11

    Article  Google Scholar 

  • Viljoen KS, Schulze DG, Quadling AG (2005) Contrasting group I and group II eclogite xenolith petrogenesis: Petrological, trace element and isotopic evidence from eclogite, garnet-websterite and alkremite xenoliths in the kaalvallei kimberlite, South Africa. J Petrol 46:2059–2090

    Article  Google Scholar 

  • Wang Z, Bucholz C, Skinner B, Shimizu N, Eiler J (2011) Oxygen isotope constraints on the origin of high-Cr garnets from kimberlites. Earth Planet Sci Lett 312:337–347

    Article  Google Scholar 

  • Wilson MR, Kjarsgaard BA, Taylor B (2007) Stable isotope composition of magmatic and deuteric carbonate phases in hypabyssal kimberlite, Lac de Gras field, Northwest Territories, Canada. Chem Geol 242:435–454

    Article  Google Scholar 

  • Wirth R, Pinti D, Sano Y, Takahata N, Kaminsky F (2007) Indications of crustal carbon in lower-mantle Juina diamond as revealed by FIB/TEM and NanoSIMS investigations. AGU Fall Meeting, San Francisco, Abstract

    Google Scholar 

  • Wirth R, Kaminsky F, Matsyuk S, Schreiber A (2009) Unusual micro- and nano-inclusions in diamonds from the Juina Area, Brazil. Earth Planet Sci Lett 286:292–303

    Article  Google Scholar 

Download references

Acknowledgments

We thank Debora Araujo for the information about analyzing her diamonds for δ15N with the use of a Cameca IMS ion microprobe, and Linton Jaques and three anonymous reviewers whose critical comments helped us to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Felix Kaminsky.

Additional information

Editorial handling: A. R. Chakhmouradian

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaminsky, F., Matzel, J., Jacobsen, B. et al. Isotopic fractionation of oxygen and carbon in decomposed lower-mantle inclusions in diamond. Miner Petrol 110, 379–385 (2016). https://doi.org/10.1007/s00710-015-0401-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00710-015-0401-7

Keywords

Navigation