Skip to main content
Log in

Single-crystal structure and Raman spectroscopy of synthetic titanite analog CaAlSiO4F

  • Original Paper
  • Published:
Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Synthetic CaAlSiO4F, the Al-F analog of titanite, has been investigated using single-crystal synchrotron diffraction experiments at Beamline X06DA (Swiss Light Source, Paul Scherrer Institute, Villigen, Switzerland) and Raman spectroscopy. The presented structural model with 40 parameters was refined against 506 unique reflections to a final R o b s of 0.026 (space group A2/a, a = 6.9120(11), b = 8.5010(10), c = 6.435(2) Å, β = 114.670(11)°, and Z = 4) and exhibits less distorted coordination polyhedra than earlier models from powder data. Vibrational spectra were calculated in harmonic approximation at the Γ point from fully relaxed energy optimisations of the crystal structure, using 3D-periodic density functional theory with Gaussian basis sets and the software CRYSTAL06. The lattice parameters of the fully relaxed structure were in good agreement with the experimental values, with the calculated values 0.8 ± 0.4 % too large; the monoclinic angle was calculated 0.4° too large. The agreement of the calculated Raman frequencies with the observed ones was very good, with standard deviation ±3 cm−1 and maximum deviations of ±7 cm−1. Furthermore, a detailed discussion of the atomic displacements associated with each Raman mode is given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adamo C, Barone V (1999) Toward reliable density functional methods without adjustable parameters: the PBE0 model. J Chem Phys 110:6158–6170. doi:10.1063/1.478522

    Article  Google Scholar 

  • Anderson AJ, Yang H, Downs RT (2015) Hydrothermal synthesis and crystal structure of AlSO4(OH): a titanite-group member. Am Mineral 100:330–333. doi:10.2138/am-2015-5160

    Article  Google Scholar 

  • Angel R (1997) Transformation of fivefold-coordinated silicon to octahedral silicon in calcium silicate, CaSi2O5. Am Mineral 82:836–839

    Google Scholar 

  • Aranda MAG, Bruque S, Attfield JP (1991) Crystal structures and characterization of a new manganese(III) arsenate, MnAsO4⋅1.2H2O and manganese(II) pyroarsenate, Mn2As2O7. Inorg Chem 30:2043–2047. doi:10.1021/ic00009a019

    Article  Google Scholar 

  • Arlt T, Armbruster T, Ulmer P, Peters T (1998) MnSi2O5 with the titanite structure: a new high-pressure phase in the MnO-SiO2 binary. Am Mineral 83:657–660

    Google Scholar 

  • Basso R, Lucchetti G, Zefiro L, Palenzona A (1994) Vanadomalayaite, CaVOSiO4, a new mineral vanadium analog of titanite and malayaite. Neues Jahrb Mineral, Monatsh , pp 489–498

  • Bermanec V (1994) Centro-symmetric tilasite from Nezilovo, Macedonia: a crystal structure refinement. Neues Jahrb Mineral, Monatsh, pp 289–294

  • Bernau R, Franz G, Langer K (1986) Experimental investigation of titanite in the system CaO−Al2O3−TiO2−SiO2−H2O. In: Experimental mineralogy and geochemistry international symposium, abstracts, Nancy, pp 21–22

  • Buzgar N, Buzatu A, Sanislav IV (2009) The Raman study on certain sulfates. Scientific Annals of “Al I Cuza” University of Iaşi, Series Geology 55:5–23

    Google Scholar 

  • Canepa P, Hanson RM, Ugliengo P, Alfredsson M (2011) J-ICE: a new Jmol interface for handling and visualizing crystallographic and electronic properties. J Appl Crystallogr 44:225–229. doi:10.1107/S0021889810049411

    Article  Google Scholar 

  • Carswell DA, Wilson RN, Zhai M (1996) Ultra-high pressure aluminous titanites in carbonate-bearing eclogites at Shuanghe in Dabieshan, central China. Mineral Mag 60:461–471. doi:10.1180/minmag.1996.060.400.07

    Article  Google Scholar 

  • Castelli D, Rubatto D (2002) Stability of Al- and F-rich titanite in metacarbonate: petrologic and isotopic constraints from a polymetamorphic eclogitic marble of the internal Sesia Zone (Western Alps). Contrib Mineral Petrol 142:627–639. doi:10.1007/s00410-001-0317-6

    Article  Google Scholar 

  • Chio CH, Sharma SK, Muenow DW (2005) Micro-Raman studies of hydrous ferrous sulfates and jarosites. Spectrochimica Acta P 61:2428–2433. doi:10.1016/j.saa.2005.02.021

    Article  Google Scholar 

  • Cooper MA, Hawthorne FC (1995) The crystal structure of maxwellite. Neues Jahrb Mineral, Monatsh, pp 97–104

  • Deer W, Howie R, Zussman J (1992) An introduction to the rock-forming minerals. Pearson Education Limited, Harlow

    Google Scholar 

  • Depmeier W (1984) Tetragonal tetrahedra distortions in cubic sodalite frameworks. Acta Crystallogr B40:185–191. doi:10.1107/S0108768184001956

    Article  Google Scholar 

  • Dovesi R, Orlando R, Erba A, Zicovich-Wilson CM, Civalleri B, Casassa S, Maschio L, Ferrabone M, De La Pierre M, D’Arco P, Noël Y, Causà M, Rérat M, Kirtman B (2014) CRYSTAL14: a program for the ab initio investigation of crystalline solids. Int J Quantum Chem 114:1287–1317. doi:10.1002/qua.24658

    Article  Google Scholar 

  • Dovesi R, Saunders VR, Roetti C, Orlando R, Zicovich-Wilson CM, Pascale F, Civalleri B, Doll K, Harrison NM, Bush IJ, D’Arco P, Llunell M (2006) CRYSTAL06 user’s manual. University of Torino, Torino

  • Downs GW, Yang BN, Thompson RM, Wenz MD, Andrade MB (2012) Redetermination of durangite, NaAl(AsO4)F. Acta Crystallogr E68:i86–i87. doi:10.1107/S160053681204384X

    Google Scholar 

  • Enami M, Suzuki K, Liou JG, Bird DK (1993) Al- Fe3+ and F-OH substitutions in titanite and constraints on their P-T dependence. Eur J Mineral 5:219–231

    Article  Google Scholar 

  • Falgayrac G, Sobanska S, Brémard C (2014) Raman diagnostic of the reactivity between ZnSO4 and CaCO3 particles in humid air relevant to heterogeneous zinc chemistry in atmosphere. Atmos Environ 85:83–91. doi:10.1016/j.atmosenv.2013.11.073

    Article  Google Scholar 

  • Fehr KT (1991) Al-OH Einbau in Titanit: ein neues Geothermo-barometer. Beihefte zum European Journal of Mineralogy 3:76

    Google Scholar 

  • Franz G, Spear FS (1985) Aluminous titanite (titanite) from the eclogite zone, south central Tauern window, Austria. Chem Geol 50:33–46. doi:10.1016/0009-2541(85)90110-X

    Article  Google Scholar 

  • Frost BR, Chamberlain KR, Schumacher JC (2000) Sphene (titanite): phase relations and role as geochronometer. Chem Geol 172:131–148. doi:10.1016/S0009-2541(00)00240-0

    Article  Google Scholar 

  • Frost RL, Kloprogge JT (2003) Raman spectroscopy of some complex arsenate minerals – implications for soil remediation. Spectrochimica Acta Part A 59:2797–2804. doi:10.1016/S1386-1425(03)00103-3

    Article  Google Scholar 

  • Frost RL, Scholz R, López A, Xi Y (2014) Raman spectroscopy of the arsenate minerals maxwellite and in comparison with tilasite. Spectrochimica Acta Part A 123:416–420. doi:10.1016/j.saa.2013.12.081

    Article  Google Scholar 

  • Genkina EA, Mill BV (1992) Crystal structures of the sphene sodium antimony germanate (NaSbGeO5) sodium tantalum germanate (NaTaGeO5) and lithium tantalum silicate (LiTaSiO5). Kristallografiya 37:1424–1428

    Google Scholar 

  • Ghent ED, Stout MZ (1994) Geobarometry of low-temperature eclogites: applications of isothermal pressure-activity calculations. Contrib Mineral Petrol 116:500–507. doi:10.1007/BF00310915

    Article  Google Scholar 

  • Gibert F, Moine B, Gibert B (1990) Titanites (sphenes) alumineueses formees a basse/moyenne pression dans la gneiss a silicates calciques de la Montagne Noire. Comptes Rendus Academie Sciences Paris, Series II 311:657–663

    Google Scholar 

  • Giester G, Wildner M (1992) The crystal structures of kieserite-type compounds. II. crystal structures of M(II) SeO4⋅H2O (M = magnesium, manganese, cobalt, nickel, zinc). Neues Jahrb Mineral, Monatsh, pp 135–144

  • Glettig W, Vitins M, Schwarb A, Maag S, Schulze-Briese C (2011) First results from PRIGO III, the parallel robotics inspired goniometer for protein crystallography. In: Proceedings of the euspen 11th international conference, vol 2, Como, p 31

  • Groat LA, Kek S, Bismayer U, Schmidt C, Krane HG, Meyer H, Nistor L, Van Tendeloo G (1996) A synchrotron radiation, HRTEM, X-ray powder diffraction, and Raman spectroscopic study of malayaite, CaSnSiO5. Am Mineral 81:595–602

    Google Scholar 

  • Groat LA, Raudsepp M, Hawthorne FC, Ercit TS, Sherriff BL, Hartman JS (1990) The amblygonite–montebrasite series: characterization by single-crystal structure refinement, infrared spectroscopy, and multinuclear MAS-NMR spectroscopy. Am Mineral 75:992–1008

    Google Scholar 

  • Harlov D, Tropper P, Seifert W, Nijland T, Förster HJ (2006) Formation of Al-rich titanite (CaTiSiO4O– CaAlSiO4OH) reaction rims on ilmenite in metamorphic rocks as a function of fH2O and fO2. Lithos 88:72–84. doi:10.1016/j.lithos.2005.08.005

    Article  Google Scholar 

  • Hawthorne FC (1990) Structural hierarchy in M[6]T[4] ϕ n minerals. Z Kristallogr 192:1–52

    Article  Google Scholar 

  • Hawthorne FC, Groat LA, Raudsepp M, Ercit TS (1987) Kieserite, Mg(SO4)(H2O), a titanite-group mineral. Neues Jahrb Mineral, Abh 157:121–132

    Google Scholar 

  • Heyns AM, Harden PM (1999) Evidence for the existence of Cr(IV) in chromium-doped malayaite Cr4+:CaSnOSiO4: a resonance Raman study. J Phys Chem Solids 60:277–284. doi:10.1016/S0022-3697(98)00251-0

    Article  Google Scholar 

  • Higgins JB, Ribbe PH (1977) The structure of malayaite, CaSnOSiO4, a tin analog of titanite. Am Mineral 62:801–806

    Google Scholar 

  • Higgins JB, Ribbe PHH (1976) The crystal chemistry and space groups of natural and synthetic titanites. Am Mineral 61:878–888

    Google Scholar 

  • Hollabaugh CL (1980) Experimental mineralogy and crystal chemistry of sphene in the system soda-lime-alumina-titania-silica-water. Ph.D. thesis, Washington State University, Pullman, Washington

  • Horiba Jobin Yvon SAS (2010) LabSpec 5, Longjumeau Cedex

  • Isaacs AM, Peacor DR (1981) Panasqueiraite, a new mineral; the OH-equivalent of isokite. Can Mineral 19:389–392

    Google Scholar 

  • Kabsch W (2010) XDS. Acta Crystallogr D66:125–132. doi:10.1107/S0907444909047337

    Google Scholar 

  • Knoche R, Angel R, Seifert F, Fliervoet T (1998) Complete substitution of Si for Ti in titanite Ca(Ti1−x Si x )SiO5. Am Mineral 83:1168–1175

    Google Scholar 

  • Kokkoros P (1938) Über die Struktur des Durangit NaAlF[AsO4]. Z Kristallogr 99:38–49. doi:10.1524/zkri.1938.99.1.38

    Google Scholar 

  • Lahti ST, Pajunen A (1985) New data on lacroixite, NaAlFPO4. Am Mineral 70:849–855

    Google Scholar 

  • Liferovich RP, Mitchell RH (2005) Composition and paragenesis of Na-, Nb- and Zr-bearing titanite from Khibina, Russia, and crystal-structure data for synthetic analogues. Can Mineral 43:795–812. doi:10.2113/gscanmin.43.2.795

    Article  Google Scholar 

  • Liferovich RP, Mitchell RH (2006) Solid solutions of niobium in synthetic titanite. Can Mineral 44:1089–1097. doi:10.2113/gscanmin.44.5.1089

    Article  Google Scholar 

  • Lightfoot P, Cheetham AK, Sleight AW (1987) Structure of manganese(3+) phosphate monohydrate by synchrotron X-ray powder diffraction. Inorg Chem 26:3544–3547. doi:10.1021/ic00268a025

    Article  Google Scholar 

  • Majzlan J, Alpers CN, Koch CB, McCleskey RB, Myneni SCB, Neil JM (2011) Vibrational, X-ray absorption, and Mössbauer spectra of sulfate minerals from the weathered massive sulfide deposit at Iron Mountain, California. Chem Geol 284:296–305. doi:10.1016/j.chemgeo.2011.03.008

    Article  Google Scholar 

  • Manning C, Bohlen S (1991) The reaction titanite + kyanite = anorthite + rutile and titanite rutile barometry in eclogites. Contrib Mineral Petrol 109:1–9. doi:10.1007/BF00687196

    Article  Google Scholar 

  • Markl G, Piazolo S (1999) Stability of high-Al titanite from low-pressure calcsilicates in light of fluid and host-rock composition. Am Mineral 84:37–47

    Google Scholar 

  • Maschio L, Kirtman B, Rérat M, Orlando R, Dovesi R (2013) Ab initio analytical Raman intensities for periodic systems through a coupled perturbed Hartree-Fock/Kohn-Sham method in an atomic orbital basis. I. Theory. J Chem Phys 139:164101. doi:10.1063/1.4824442

    Article  Google Scholar 

  • Mc Near E, Vincent MG, Parthe E (1976) The crystal structure of vuagnatite, CaAlSiO4(OH). Am Mineral 61:831–838

    Google Scholar 

  • Meyer HW, Zhang M, Bismayer U, Salje EKH, Schmidt C, Kek S, Morgenroth W, Bleser T (1996) Phase transformation of natural titanite: an infrared, Raman spectroscopic, optical birefringence and X-ray diffraction study. Phase Transit 59:39–60. doi:10.1080/01411599608220035

    Article  Google Scholar 

  • Mill BV, Belokoneva EL, Butashin AV (1990) Synthesis and crystal structure of A+M5+GeO5 (A = Li, Na; M = Nb, Ta, Sb) and lithium tantalum silicate (LiTaSiO5). Kristallografiya 35:316–323

    Google Scholar 

  • Mongiorgi R, Riva di Sanseverino L (1968) Reconsideration of the structure of titanite [sphene] catiosio4. Mineralogica et Petrographica Acta 14:123–141

    Google Scholar 

  • Nada R, Catlow CRA, Pisani C, Orlando R (1993) An ab-initio Hartree-Fock perturbed-cluster study of neutral defects in LiF. Model Simul Mater Sci Eng 1:165–187. doi:10.1088/0965-0393/1/2/005

    Article  Google Scholar 

  • Noel Y (2008) Vibration modes on a web page using jmol. http://www.theochem.unito.it/crystal_tuto/mssc2008_cd/jmoledit/index.html. Accessed Jan 2013

  • Oberti R, Smith DC, Rossi G, Caucia F (1991) The crystal chemistry of high-aluminum titanites. Eur J Mineral 3:777–792

    Article  Google Scholar 

  • Page FZ, Armstrong LS, Essene EJ, Mukasa SB (2007) Prograde and retrograde history of the Junction School eclogite, California, and an evaluation of garnet-phengite-clinopyroxene thermobarometry. Contrib Mineral Petrol 153:533–555. doi:10.1007/s00410-006-0161-9

    Article  Google Scholar 

  • Pascale F, Zicovich-Wilson CM, López Gejo F, Civalleri B, Orlando R, Dovesi R (2004) The calculation of the vibrational frequencies of crystalline compounds and its implementation in the CRYSTAL code. J Comput Chem 25:888–897. doi:10.1002/jcc.20019

    Article  Google Scholar 

  • Pascale F, Zicovich-Wilson CM, Orlando R, Roetti C, Ugliengo P, Dovesi R (2005) Vibration frequencies of Mg3Al2Si3O12 pyrope. An ab initio study with the CRYSTAL code. J Phys Chem B 109:6146–6152. doi:10.1021/jp050316z

    Article  Google Scholar 

  • Petříček V, Dušek M, Palatinus L (2014) Crystallographic computing system JANA2006: general features. Z Kristallogr 229:345–352. doi:10.1515/zkri-2014-1737

    Google Scholar 

  • Ribbe PH (1982) Titanite. In: Ribbe PH (ed) Orthosilicates, reviews in mineralogy, vol 5, pp 137–155

  • Robinson K, Gibbs GV, Ribbe PH (1971) Quadratic elongation: a quantitative measure of distortion in coordination polyhedra. Science 172:567–570. doi:10.1126/science.172.3983.567

    Article  Google Scholar 

  • Rudolph WW, Brooker MH, Tremaine PR (1999) Raman spectroscopy of aqueous ZnSO4 solutions under hydrothermal conditions: solubility, hydrolysis, and sulfate ion pairing. J Solution Chem 28:621–630. doi:10.1023/A:1022691117630

    Article  Google Scholar 

  • Salje E, Schmidt C, Bismayer U (1993) Structural phase transition in titanite, CaTiSiO5: a ramanspectroscopic study. Phys Chem Miner 19:502–506. doi:10.1007/BF00203191

    Article  Google Scholar 

  • Sebastian L, Gopalakrishnan J, Piffard Y (2002) Synthesis, crystal structure and lithium ion conductivity of LiMgFSO4. J Mater Chem 12:374–377. doi:10.1039/B108289M

    Article  Google Scholar 

  • Smith DC (1977) Aluminium bearing sphene in eclogites from Sunnmore (Norway). Geolognytt 10:32–33

    Google Scholar 

  • Smith DC (1981) The pressure and temperature dependence of Al-solubility in titanite in the system Ti–Al–Ca–Si–O–F. Prog Exp Petrol, NERC Publication Series D 18:193–197

    Google Scholar 

  • Sobolev NV, Shatsky VS (1990) Diamond inclusions in garnets from metamorphic rocks: a new environment for diamond formation. Nature 343:742–746. doi:10.1038/343742a0

    Article  Google Scholar 

  • Speer JA, Gibbs GV (1976) The crystal structure of synthetic titanite, CaTiOSiO4, and the domain textures of natural titanites. Am Mineral 61:238–247

    Google Scholar 

  • Taylor M, Brown GE (1976) High-temperature structural study of the P21/aA2/a phase transition in synthetic titanite, CaTiSiO5. Am Mineral 61:435–447

    Google Scholar 

  • Többens DM, Kahlenberg V (2011) Improved DFT calculation of Raman spectra of silicates. Vib Spectrosc 56:265–272. doi:10.1016/j.vibspec.2011.04.002

    Article  Google Scholar 

  • Towler M (2013) CRYSTAL resources page. http://www.tcm.phy.cam.ac.uk/~mdt26/crystal.html. Accessed Jan 2013

  • Towler MD, Allan NL, Harrison NM, Saunders VR, Mackrodt WC, Aprà E (1994) Ab initio study of MnO and NiO. Phys Rev B: Condens Matter Mater Phys 50:5041–5054. doi:10.1103/PhysRevB.50.5041

    Article  Google Scholar 

  • Troitzsch U, Ellis DJ (1999) The synthesis and crystal structure of CaAlFSiO4, the Al-F analog of titanite. Am Mineral 84:1162–1169

    Google Scholar 

  • Troitzsch U, Ellis DJ (2002) Thermodynamic properties and stability of AlF-bearing titanite CaTiOSiO4−CaAlFSiO4. Contrib Mineral Petrol 142:543–563. doi:10.1007/s004100100309

    Article  Google Scholar 

  • Troitzsch U, Ellis DJ, Thompson J, Fitz-Gerald J (1999) Crystal structural changes in titanite along the join TiO-AlF. Eur J Mineral 11:955–965

    Article  Google Scholar 

  • Tropper P, Manning C, Essene EJ (2002) The substitution of Al and F in titanite at high pressure and temperature: experimental constraints on phase relations and solid solution properties. J Petrol 43:1787–1814. doi:10.1093/petrology/43.10.1787

    Article  Google Scholar 

  • Tropper P, Manning CE (2008) The current status of titanite-rutile thermobarometry in ultrahigh-pressure metamorphic rocks: the influence of titanite activity models on phase equilibrium calculations. Chem Geol 254:123–132. doi:10.1016/j.chemgeo.2008.03.010

    Article  Google Scholar 

  • Wang A, Freeman JJ, Arvidson R (2008) Study of two structural polymorphs of MgSO4⋅H2O by Raman, IR, XRD, and humidity buffer experiments: implication for Martian kieserite.. In: Abstracts of the 39th lunar and planetary science conference, League City, p 2172

  • Wang A, Freeman JJ, Jolliff BL (2009) Phase transition pathways of the hydrates of magnesium sulfate in the temperature range 50 °C to 5 °C: implication for sulfates on Mars. J Geophys Res Planets 114:E04010. doi:10.1029/2008JE003266

    Google Scholar 

  • Wildner M, Giester G (1991) The crystal structures of kieserite-type compounds. I. crystal structures of metal sulfate monohydrate (M(II) SO4⋅H2O; M=Mn,Fe,Co,Ni,Zn). Neues Jahrb Mineral, Monatsh, pp 296–306

  • Xirouchakis D, Lindsley DH (1998) Equilibria among titanite, hedenbergite, fayalite, quartz, ilmenite and magnetite: experiments and internally consistent thermodynamic data for titanite. Am Mineral 83:712–725

    Google Scholar 

  • Yang H, Zwick J, Downs RT, Costin G (2007) Isokite, CaMg(PO4) F0.8(OH)0.2, isomorphous with titanite. Acta Crystallogr C63:i89–i90. doi:10.1107/S0108270107041169

    Google Scholar 

  • Zachariasen WH (1930) II. the crystal structure of titanite. Z Kristallogr 73:7–16. doi:10.1524/zkri.1930.73.1.7

    Google Scholar 

  • Zhang M, Meyer HW, Groat LA, Bismayer U, Salje EKH , Adiwidjaja G (1999) An infrared spectroscopic and single-crystal X-ray study of malayaite, CaSnSiO5. Phys Chem Miner 26:546–553. doi:10.1007/s002690050218

    Article  Google Scholar 

  • Zhang M, Salje EKH, Redfern SAT, Bismayer U, Groat LA (2013) Intermediate structures in radiation damaged titanite (CaTiSiO5): a Raman spectroscopic study. J Phys: Condens Matter 25:115402. doi:10.1088/0953-8984/25/11/115402

    Google Scholar 

  • Zicovich-Wilson CM, Torres FJ, Pascale F, Valenzano L, Orlando R, Dovesi R (2008) Ab initio simulation of the IR spectra of pyrope, grossular, and andradite. J Comput Chem 29:2268–2278. doi:10.1002/jcc.20993

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank H. Witting for manufacturing very helpful ‘SPINE standard base adapters’. The Dirac computer cluster of the HZB was used. H.K. thanks C. Hejny for help with additional Raman measurements and U.H. acknowledges financial support of the Austrian Science Fund (FWF): [P22013-N21].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hannes Krüger.

Additional information

Editorial handling: L. Nasdala

Electronic supplementary material

Below is the link to the electronic supplementary material.

(PDF 122 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krüger, H., Többens, D.M., Tropper, P. et al. Single-crystal structure and Raman spectroscopy of synthetic titanite analog CaAlSiO4F. Miner Petrol 109, 631–641 (2015). https://doi.org/10.1007/s00710-015-0393-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00710-015-0393-3

Keywords

Navigation