Skip to main content
Log in

Polymetamorphic evolution of the granulite-facies Paleoproterozoic basement of the Kabul Block, Afghanistan

  • Original Paper
  • Published:
Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

The Kabul Block is an elongate crustal fragment which cuts across the Afghan Central Blocks, adjoining the Indian and Eurasian continents. Bounded by major strike slip faults and ophiolitic material thrust onto either side, the block contains a strongly metamorphosed basement consisting of some of the only quantifiably Proterozoic rocks south of the Herat-Panjshir Suture Zone. The basement rocks crop-out extensively in the vicinity of Kabul City and consist predominantly of migmatites, gneisses, schists and small amounts of higher-grade granulite-facies rocks. Granulite-facies assemblages were identified in felsic and mafic siliceous rocks as well as impure carbonates. Granulite-facies conditions are recorded by the presence of orthopyroxene overgrowing biotite in felsic rocks; by orthopyroxene overgrowing amphibole in mafic rocks and by the presence of olivine and clinohumite in the marbles. The granulite-facies assemblages are overprinted by a younger amphibolite-facies event that is characterized by the growth of garnet at the expense of the granulite-facies phases. Pressure-temperature (P-T) conditions for the granulite-facies event of around 850 °C and up to 7 kbar were calculated through conventional thermobarometry and phase equilibria modeling. The younger, amphibolite-facies event shows moderately higher pressures of up to 8.5 kbar at around 600 °C. This metamorphism likely corresponds to the dominant metamorphic event within the basement of the Kabul Block. The results of this work are combined with the litho-stratigraphic relations and recent geochronological dating to analyze envisaged Paleoproterozoic and Neoproterozoic metamorphic events in the Kabul Block.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abdullah S, Chmyriov VM (1977) Geologiya I poleznye iskopaemye Afganistana, Kniga 1. Nedra, Geologiy. Moscow 535 p

    Google Scholar 

  • Andritzký G (1967) Bau und Entstehungsgeschichte des Altkristallin-Keils von Kabul (Afghanistan) und seiner Randzonen. Geol Jahrb 84:617–636

    Google Scholar 

  • Andritzký G (1971) Das Kristallin im Gebiet Panjao-Kabul-Jalalabad (Zentral- und Ost-Afghanistan). Niedersächsische Landesamt für Bodenforschung, Geologisches Jahrbuch 96:5–77

    Google Scholar 

  • Auzanneau E, Schmidt MW, Vielzeuf D, Connolly JD (2010) Titanium in phengite: a geobarometer for high temperature eclogites. Contrib Mineral Petrol, 159(1):1–24.

  • Benisek A, Dachs E, Kroll H (2010) A ternary feldspar-mixing model based on calorimetric data: development and application. Contrib Mineral Petrol 160(3):327–337

    Article  Google Scholar 

  • Bhattacharya A, Krishnakumar KR, Raith M, Sen SK (1991) An Improved Set of a-X Parameters for Fe-Mg-Ca Garnets and Refinements of the Orthopyroxene-Garnet Thermometer and the Orthopyroxene-Garnet-Plagioclase-Quartz Barometer. J Petrol 32(3):629–656

    Article  Google Scholar 

  • Bhattacharya A, Mohanty L, Maji A, Sen SK, Raith M (1992) Non-ideal mixing in the phlogopite-annite binary: constraints from experimental data on Mg-Fe partitioning and a reformulation of the biotite-garnet geothermometer. Contrib Mineral Petrol 111(1):87–93

    Article  Google Scholar 

  • Bohannon RG (2010) Geologic and Topographic Maps of the Kabul North 30 × 60 Quadrangle. Afghanistan. US Department of the Interior, US Geological Survey

    Google Scholar 

  • Boulin J (1991) Structures in Southwest Asia and evolution of the eastern Tethys. Tectonophysics 196:211–268

    Article  Google Scholar 

  • Brookfield ME, Hashmat A (2001) The geology and petroleum potential of the North Afghan platform and adjacent areas (northern Afghanistan, with parts of southern Turkmenistan, Uzbekistan and Tajikistan). Earth Sci Rev 55(1):41–71

    Article  Google Scholar 

  • Coggon R, Holland TJB (2002) Mixing properties of phengitic micas and revised garnet-phengite thermobarometers. J Metamorph Geol 20(7):683–696

    Article  Google Scholar 

  • Collett S (2011) Crustal evolution in the Paleoproterozoic of Afghanistan: Insights from the Sherdarwaza gneiss of the Kabul Block. University of Leicester, Masters Dissertation

    Google Scholar 

  • Connolly JAD (2005) Computation of phase equilibria by linear programming: a tool for geodynamic modeling and its application to subduction zone decarbonation. Earth Planet Sci Lett 236(1):524–541

    Article  Google Scholar 

  • Debon F, Afzali H, Le-Fort P, Sonet J (1987) Major intrusive stages in Afghanistan; typology, age and geodynamic setting. Geol Rundsch 76:245–264

    Article  Google Scholar 

  • Droop GTR (1987) A general equation for estimating Fe3+ concentrations in ferromagnesian silicates and oxides from microprobe analyses, using stoichiometric criteria. Mineral Mag 51(361):431–435

    Article  Google Scholar 

  • Faryad SW (1999) Metamorphic evolution of the Precambrian South Badakhshan block, based on mineral reactions in metapelites and metabasites associated with whiteschists from Sare Sang (Western Hindu Kush, Afghanistan). Precambrian Res 98(3):223–241

    Article  Google Scholar 

  • Faryad SW (2002) Metamorphic conditions and fluid compositions of scapolite-bearing rocks from the lapis lazuli deposit at Sare Sang, Afghanistan. J Petrol 43(4):725–747

    Article  Google Scholar 

  • Faryad SW, Hoinkes G (2003) P–T gradient of Eo-Alpine metamorphism within the Austroalpine basement units east of the Tauern Window (Austria). Mineral Petrol 77(1–2):129–159

    Article  Google Scholar 

  • Faryad SW, Mosazai AM, Sergeev S, Wasay A (2009) Metamorphism and age relations in the Proterozoic Kabul Block; PT conditions and new SHRIMP dating. Abstract volume, 2nd International Hindu Kush Geoscience Conference, September, 27–29. 2009, Kabul.

  • Faryad SW, Collett S, Petterson M, Sergeev SA (2013) Magmatism and metamorphism linked to the accretion of continental blocks south of the Hindu Kush, Afghanistan. Lithos 175:302–314

    Article  Google Scholar 

  • Faryad SW, Collett S, Finger F, Sergeev SV, Čopjaková R, Simon P (2015) The Kabul Block (Afghanistan), a segment of the Columbia Supercontinent, with a Neoproterozoic metamorphic overprint. Gondwana Research (in press)

  • Fesefeldt K (1964) Das Paläozoikum im Gebiet der oberen Logar und im östlichen Hazarajat südwestlich Kabul, Afghanistan. Geol Jahrb 70:185–228

    Google Scholar 

  • Fischer J (1971) Zur Geologie des Kohe Safi bei Kabul (Afghanistan). Universität zu Köln, Dissertation

    Google Scholar 

  • Fitzsimons ICW, Harley SL (1994) The influence of retrograde cation exchange on granulite PT estimates and a convergence technique for the recovery of peak metamorphic conditions. J Petrol 35(2):543–576

    Article  Google Scholar 

  • Godard G (2009) Two orogenic cycles recorded in eclogite-facies gneiss from the southern Armorican Massif (France). Eur J Mineral 21(6):1173–1190

    Article  Google Scholar 

  • Graphchikov AA, Konilov AN, Clemens JD (1999) Biotite dehydration, partial melting, and fluid composition: Experiments in the system KAlO2-FeOMgO-SiO2-H2O-CO2. Am Mineral 84:15–26

  • Hawthorne FC, Oberti R, Harlow GE, Maresch WV, Martin RF, Schumacher JC, Welch MD (2012) Nomenclature of the amphibole supergroup. Am Mineral 97(11–12):2031–2048

    Article  Google Scholar 

  • Hodges KV, Crowley PD (1985) Error estimation and empirical geothermobarometry for pelitic systems. Am Mineral 70(7–8):702–709

    Google Scholar 

  • Hoisch TD (1990) Empirical calibration of six geobarometers for the mineral assemblage quartz + muscovite + biotite + plagioclase + garnet. Contrib Mineral Petrol 104(2):225–234

    Article  Google Scholar 

  • Holdaway MJ (2000) Application of new experimental and garnet Margules data to the garnet-biotite geothermometer. Am Mineral 85(7–8):881–892

    Google Scholar 

  • Holland TJB, Powell R (1998) An internally consistent thermodynamic data set for phases of petrological interest. J Metamorph Geol 16(3):309–343

    Article  Google Scholar 

  • Kafarsky AKh, Chmyriov VM, Stazhilo-Alekseev KF, Abdullah Sh, Saikovsky VS (1975) Geological map of Afghanistan, scale 1:2,500,000

  • Karapetov SS, Sorokin YA, Sytov YN, Chepela VF, Abdullah S, Ashmat A (1981) Geological structure of Kabul town region (Report of Logar and Helmand prospecting-mapping group in 1979–1981). Unpublished report, Afghan Geological Survey

    Google Scholar 

  • Kohn MJ, Spear FS (1990) Two new geobarometers for garnet amphibolites, with applications to southeastern Vermont. Am Mineral 75(1–2):89–96

    Google Scholar 

  • Koziol AM, Newton RC (1988) Redetermination of the anorthite breakdown reaction and improvement of the plagioclase-garnet-Al2SiO5-quartz geobarometer. Am Mineral 73(3–4):216–223

    Google Scholar 

  • Lee HY, Ganguly J (1988) Equilibrium compositions of coexisting garnet and orthopyroxene: experimental determinations in the system FeO-MgO-Al2O3-SiO2, and applications. J Petrol 29(1):93–113

    Article  Google Scholar 

  • Leven EJ (1997) Permian stratigraphy and fusulinida of Afghanistan with their paleogeographic and paleotectonic implications, Stevens, C.H., and Baars, D.L., eds: Geological Society of America Special Paper 316, 134 p

  • Locock AJ (2014) An Excel spreadsheet to classify chemical analyses of amphiboles following the IMA 2012 recommendations. Comput Geosci 62:1–11

    Article  Google Scholar 

  • Mennessier G (1976) Nouvelles observations sur l’âge de la série de Kotagaé et les ultrabasites qui la surmontent; incidence sur la structure du fossé de Kaboul (Afghanistan occidental), Comptes rendus hebdomadaires des séances de l’Académie des sciences. Série D: Sciences naturelles 282(17):1581–1583

    Google Scholar 

  • Newton RC, Perkins DI (1982) Thermodynamic calibration of geobarometers based on the assemblages garnet-plagioclase-orthopyroxene (clinopyroxene)-quartz. Am Mineral 67(3–4):203–222

    Google Scholar 

  • Patiño Douce AE, Johnston AD (1991) Phase equilibria and melt productivity in the pelitic system: implications for the origin of peraluminous granitoids and aluminous granulites. Contrib Mineral Petrol 107(2):202–218

  • Pattison DRM (2003) Petrogenetic significance of orthopyroxene‐free garnet + clinopyroxene + plagioclase ± quartz‐bearing metabasites with respect to the amphibolite and granulite facies. J Metamorph Geol, 21(1):21–34.

  • Perchuk LL, Aranovich LY, Podlesskii KK, Lavrant'eva IV, Gerasimov VY, Fed'Kin VV, Kitsul VI, Karsakov LP, Berdnikov NV (1985) Precambrian granulites of the Aldan shield, eastern Siberia, USSR. J Metamorph Geol, 3(3):265–310.

  • Powell R, Holland TJB (1999) Relating formulations of the thermodynamics of mineral solid solutions: activity modeling of pyroxenes, amphiboles, and micas. Am Mineral 84:1–14

    Google Scholar 

  • Proyer A, Mposkos E, Baziotis I, Hoinkes G (2008) Tracing high-pressure metamorphism in marbles: Phase relations in high-grade aluminous calcite–dolomite marbles from the Greek Rhodope massif in the system CaO–MgO–Al2O3–SiO2–CO2 and indications of prior aragonite. Lithos 104(1):119–130

    Article  Google Scholar 

  • Sarkar T, Schenk V (2014) Two-stage granulite formation in a Proterozoic magmatic arc (Ongole domain of the Eastern Ghats Belt, India): Part 1. Petrology and pressure–temperature evolution, Precambrian Research

    Google Scholar 

  • Satish-Kumar M, Wada H, Santosh M, Yoshida M (2001) Fluid‐rock history of granulite facies humite‐marbles from Ambasamudram, southern India. J Metamorph Geol 19(4):395–410

    Article  Google Scholar 

  • Schreyer W, Abraham K (1975) Peraluminous sapphirine as a metastable reaction product in kyanite-gedrite-talc schist from Sar e Sang, Afghanistan. Mineral Mag, 40:171–180.

  • Şengör AC (1984) The Cimmeride orogenic system and the tectonics of Eurasia. Geol Soc Am Spec Pap 195:1–74

    Article  Google Scholar 

  • Slavin VI, Federov TO, Feruz NM (1972) The geology and age of the metamorphic complex in the Kabul district. Vestnik Moskovskogo Universiteta, Moscow

    Google Scholar 

  • Sommer H, Kröner A (2013) Ultra-high temperature granulite-facies metamorphic rocks from the Mozambique belt of SW Tanzania. Lithos 170:117–143

    Article  Google Scholar 

  • Spear FS, Peacock SM (1989) Petrologic Determination of Metamorphic Pressure‐Temperature‐Time Paths. American Geophysical Union. 102 pp.

  • Spear FS, Kohn MJ, Cheney JT (1999). P-T paths from anatectic pelites. Contrib Mineral Petrol 134(1):17–32

  • Tajčmanová L, Connolly JAD, Cesare B (2009) A thermodynamic model for titanium and ferric iron solution in biotite. J Metamorph Geol 27(2):153–165

    Article  Google Scholar 

  • Tapponnier P, Mattauer M, Proust F, Cassaigneau C (1981) Mesozoic ophiolites, sutures, and Large-scale tectonic movements in Afghanistan. Earth Planet Sci Lett 52(2):355–371

    Article  Google Scholar 

  • Timmermann H, Jamieson RA, Parrish RR, Culshaw NG (2002) Coeval migmatites and granulites, Muskoka domain, southwestern Grenville Province, Ontario. Can J Earth Sci 39(2):239–258

  • Treloar PJ, Izatt CN (1993) Tectonics of the Himalayan collision between the Indian plate and the Afghan block: A synthesis. Geol Soc Lond, Spec Publ 74:69–87

    Article  Google Scholar 

  • Wallbrecher E, (1974) Zur Geologie der Südflanke des afganischen Hindukush zwischen den Flüssen Salang und Parandeh. (PhD thesis) Freien Universität, Berlin, 150 pp.

  • White RW, Powell R, Holland TJB, Worley BA (2000) The effect of TiO2 and Fe2O3 on metapelitic assemblages at greenschist and amphibolite facies conditions: mineral equilibria calculations in the system K2O-FeO-MgO-Al2O3-SiO2-H2O-TiO2-Fe2O3. J Metamorph Geol 18(5):497–512

    Article  Google Scholar 

  • White RW, Powell R, Holland TJB (2007) Progress relating to calculation of partial melting equilibria for metapelites. J Metamorph Geol 25(5):511–527

    Article  Google Scholar 

  • Whitney DL, Evans BW (2010) Abbreviations for names of rock-forming minerals. Am Mineral 95(1):185

    Article  Google Scholar 

  • Wu CM, Zhang J, Ren LD (2004) Empirical garnet–biotite–plagioclase–quartz (GBPQ) geobarometry in medium-to high-grade metapelites. J Petrol 45(9):1907–1921

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the assistance of Afghanistan Geological Survey for allowing access to unpublished archive material. This project was funded by research project P 13-06958S (Czech Sciences Foundation) and 680214 (Grant Agency of Charles University). We would like to thank H. Ur Rehman for reading an earlier version of this paper. The paper was improved by thoughtful review of P. Tropper and two anonymous reviewers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen Collett.

Additional information

Editorial handling: G. Hoinkes

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Collett, S., Faryad, S.W. & Mosazai, A.M. Polymetamorphic evolution of the granulite-facies Paleoproterozoic basement of the Kabul Block, Afghanistan. Miner Petrol 109, 463–484 (2015). https://doi.org/10.1007/s00710-015-0371-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00710-015-0371-9

Keywords

Navigation