Skip to main content
Log in

Phase transformation of Mg-calcite to aragonite in active-forming hot spring travertines

  • Original Paper
  • Published:
Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

A travertine specimen collected from the western part of Yunnan Province of China was subjected to microstructural analysis by powder X-ray diffraction, scanning electron microscopy, high resolution transmission electron microscopy and energy dispersive X-ray spectroscopy. A new formation mechanism was proposed whereby polycrystalline rhombohedral particles of magnesium-containing calcite underwent a phase transformation into sheaf-like clusters of aragonite microrods. It is proposed that a high concentration of magnesium ions and embedded biological matter poisoned the growth of calcite and therefore instigated the phase transformation of the core of the rhombohedral calcite particles to an aragonite phase with a higher crystallinity. The single crystalline aragonite microrods with a higher density than the Mg-calcite nanocrystallites grew at the expense of the latter to generate sheaf-like clusters. This newly discovered formation mechanism is expected to enhance previous knowledge on this geologically important phase transformation from a morphology point of view.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Allen CC, Albert FG, Chafetz HS, Combie J, Graham CR, Kieft TL, Kivett SJ, McKay DS, Steele A, Taunton AE, Taylor MR, Thomas-Keprta KL, Westall F (2000) Microscopic physical biomarkers in carbonate hot springs: implications in the search for life on mars. Icarus 147:49–67

    Article  Google Scholar 

  • Andersson AJ, Mackenzie FT, Bates NR (2008) Life on the margin: implications of ocean acidification on Mg-calcite, high latitude and cold-water marine calcifiers. Mar Ecol Prog Ser 373:265–273

    Article  Google Scholar 

  • Arp G, Reimer A, Reitner J (2001) Photosynthesis-induced biofilm calcification and calcium concentrations in phanerozoic oceans. Science 292:1701–1704

    Article  Google Scholar 

  • Atkins P, De Paula J (2010) Atkins’ Physical Chemistry. 9th Ed., Oxford

  • Bravais A (1866) Études Crystallographiques. Gauthier-Villars, Paris

    Google Scholar 

  • Capezzuoli E, Gandin A, Pedley M (2014) Decoding tufa and travertine (fresh water carbonates) in the sedimentary record: the state of art. Sedimentology 61:1–21

    Article  Google Scholar 

  • Chen XY, Qiao MH, Xie SH, Fan KN, Zhou WZ, He HY (2007) Self-construction of core–shell and hollow zeolite analcime icositetradedral: a reversed crystal growth process via oriented aggregation of nanocrystallites and recrystallization from surface to core. J Am Chem Soc 129:13305–13312

    Article  Google Scholar 

  • Curie P (1885) Sur la formation des cristaux et sur les constants capillaires de leurdifférentes faces. Bull Soc Fr Minéral Cristallogr 8:145–150

    Google Scholar 

  • de Choudens-Sánchez V, González LA (2009) Calcite and aragonite precipitation under controlled instantaneous supersaturation: elucidating the role of CaCO3 saturation state and Mg/Ca ratio on calcium carbonate polymorphism. J Sediment Res 79:363–376

    Article  Google Scholar 

  • Donnay JDH, Harker D (1937) A new law of crystal morphology extending the law of Bravis. Am Mineral 22:446–467

    Google Scholar 

  • Folk RL (1974) The natural history of crystalline calcium carbonate; effect of magnesium content and salinity. J Sediment Res 44:40–53

    Google Scholar 

  • Friedel MG (1907) Étudessurla loi de bravais. Bull Soc Fr Minéral Cristallogr 30:326–455

    Google Scholar 

  • Hacker BR, Kirby SH, Bohlen SR (1992) Time and metamorphic petrology: calcite to aragonite experiments. Science 258:110–112

    Article  Google Scholar 

  • Hacker BR, Rubie DC, Kirby SH, Bohlen SR (2005) The calcite → aragonite transformation in low-Mg marble: equilibrium relations, transformation mechansims, and rates. J Geophys Res-Sol 110, B03205

    Google Scholar 

  • Han YS, Hadiko G, Fuji M, Takahashi M (2006) Crystallization and transformation of vaterite at controlled pH. J Cryst Growth 289:269–274

    Article  Google Scholar 

  • Hartman P, Perdok WG (1955) On the relations between structure and morphology of crystals. II. Acta Crystallogr 8:521–524

    Article  Google Scholar 

  • Jin D, Wang F, Yue L (2011) Phase and morphology evolution of vaterite crystals in water/ethanol binary solvent. Cryst Res Technol 46:140–144

    Article  Google Scholar 

  • Jones B, Renaut RW (2008) Cyclic development of large, complex, calcite dendrite crystals in the Clinton travertine, interior British Columbia, Canada. Sediment Geol 203:17–35

    Article  Google Scholar 

  • Kawano J, Shimobayashi N, Miyake A, Kitamura M (2009) Precipitation diagram of calcium carbonate polymorphs: its construction and significance. J Phys Condens Matter 21:425102–425107

    Article  Google Scholar 

  • Kroch A, Nebelsick JH (2010) Echinoderms and oligo-miocene carbonate systems: potential applications in sedimentology and environmental reconstruction. Int Assoc Sedimentol Spec Publ 42:201–228

    Google Scholar 

  • Lin S-J, Huang W-L (2004) Polycrystalline calcite to aragonite transformation kinetics: experiments in synthetic systems. Contrib Mineral Petrol 147:604–614

    Article  Google Scholar 

  • Loste E, Wilson RM, Seshadri R, Meldrum FC (2003) The role of magnesium in stabilising amorphous calcium carbonate and controlling calcite morphologies. J Cryst Growth 254:206–218

    Article  Google Scholar 

  • Mackenzie FT, Bischoff WD, Bishop FC, Loijens M, Schoonmaker J, Wollast R (1983) Magnesium calcites; low temperature occurrence, solubility and solid state behaviour. Rev Mineral Geochem 11:97–144

    Google Scholar 

  • Nielsen LC, de Yoreo JJ, DePaolo DJ (2013) General model for calcite growth kinetics in the presence of impurity ions. Geochim Cosmochim Acta 115:100–114

    Article  Google Scholar 

  • Nindiyasari F, Griesshaber E, Fernández-Díaz L, Astilleros JM, Sánchez-Pastor N, Ziegler A, Schmahl WW (2014) Effects of Mg and hydrogel solid content on the crystallisation of calcite carbonate in biomimetic counter-diffusion systems. Cryst Growth Des. doi:10.1021/cg500938k

    Google Scholar 

  • Ostwald W (1896) Lehrbuch der Allgemeinen Chemie. W. Engelmann, Leipzig, Germany, Vol. 2, Part 1

  • Pentecost A (1985) Association of cyanobacteria with tufu deposits: identity, enumeration and nature of the sheath material revealed by histochemistry. Geomicrobiol J 4:285–298

    Article  Google Scholar 

  • Pentecost A (2005) Travertine. Springer, The Netherlands

    Google Scholar 

  • Perdikouri C, Piazolo S, Kasioptas A, Schmidt BC (2013) Hydrothermal replacement of aragonite by calcite: interplay between replacement, fracturing and growth. Eur J Mineral 25:123–136

    Article  Google Scholar 

  • Plee K, Ariztegui D, Martini R, Davaud E (2008) Unravelling the microbial role in ooid formation – results of an in situ experiment in modern freshwater Lake Geneva in Switzerland. Geobiology 6:341–350

    Article  Google Scholar 

  • Raz S, Weiner S, Addadi L (2000) Formation of high-magnesian calcites via an amorphous precursor phase: possible biological implications. Adv Mater 12:38–42

    Article  Google Scholar 

  • Raz S, Hamilton PC, Wilt FH, Weiner S, Addadi L (2003) The transient phase of amorphous calcium carbonate in sea urchin larval spicules: the involvement of proteins and magnesium ions in its formation and stabilization. Adv Funct Mater 13:480–486

    Article  Google Scholar 

  • Ruan X, Li L, Liu J (2013) Flocculating characteristic of activated sludge flocs: interaction btween Al3+ and extracellular substances (EPS). J Environ Sci 25:916–924

    Article  Google Scholar 

  • Schroeder JH, Dwornik EJ, Papike JJ (1969) Primary protodolomite in echinoid skeletons. Geol Soc Am Bull 80:1613–1616

    Article  Google Scholar 

  • Vu B, Chen M, Crawford RJ, Ivanova EP (2009) Bacterial extracellular polysaccharides involved in biofilm formation. Molecules 14:2535–2554

    Article  Google Scholar 

  • Wulff G (1901) Zur frage der geschwindigkeit des wachstums und der auflösung der kristallflächen. Z Kristallogr 34:449–530

    Google Scholar 

  • Yang XF, Fu JX, Jin CJ, Chen J, Liang CL, Wu MM, Zhou WZ (2010) Formation mechanism of CaTiO3 hollow crystals with different microstructures. J Am Chem Soc 132:14279–14287

    Article  Google Scholar 

  • Yuan D, Wang Y (2013) Effects of solution conditions on the physicochemical properties of stratification components of extracellular polymeric substances in anaerobic digested sludge. J Environ Sci 25:155–162

    Article  Google Scholar 

  • Zhou G-T, Yao Q-Z, Ni J, Jin G (2009) Formation of aragonite mesocrystals and implication for biomineralization. Am Mineral 94:293–302

    Article  Google Scholar 

Download references

Acknowledgments

HFG would like to thank the University of St Andrews for the studentship and Mr Ross Blackley for his help on using the SEM and TEM microscopes. WZZ thanks EPSRC for financial support on FEG-SEM equipment (EP/F019580/1) and a Platform (EP/K015540/1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wuzong Zhou.

Additional information

Editorial handling: J. G. Raith

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Greer, H.F., Zhou, W. & Guo, L. Phase transformation of Mg-calcite to aragonite in active-forming hot spring travertines. Miner Petrol 109, 453–462 (2015). https://doi.org/10.1007/s00710-015-0367-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00710-015-0367-5

Keywords

Navigation