Skip to main content
Log in

Nickelpicromerite, K2Ni(SO4)2•6H2O, a new picromerite-group mineral from Slyudorudnik, South Urals, Russia

  • Original Paper
  • Published:
Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

A new picromerite-group mineral, nickelpicromerite, K2Ni(SO4)2 · 6H2O (IMA 2012–053), was found at the Vein #169 of the Ufaley quartz deposit, near the town of Slyudorudnik, Kyshtym District, Chelyabinsk area, South Urals, Russia. It is a supergene mineral that occurs, with gypsum and goethite, in the fractures of slightly weathered actinolite-talc schist containing partially vermiculitized biotite and partially altered sulfides: pyrrhotite, pentlandite, millerite, pyrite and marcasite. Nickelpicromerite forms equant to short prismatic or tabular crystals up to 0.07 mm in size and anhedral grains up to 0.5 mm across, their clusters or crusts up to 1 mm. Nickelpicromerite is light greenish blue. Lustre is vitreous. Mohs hardness is 2–2½. Cleavage is distinct, parallel to {10–2}. D meas is 2.20(2), D calc is 2.22 g cm−3. Nickelpicromerite is optically biaxial (+), α = 1.486(2), β = 1.489(2), γ = 1.494(2), 2Vmeas =75(10)°, 2Vcalc =76°. The chemical composition (wt.%, electron-microprobe data) is: K2O 20.93, MgO 0.38, FeO 0.07, NiO 16.76, SO3 37.20, H2O (calc.) 24.66, total 100.00. The empirical formula, calculated based on 14 O, is: K1.93Mg0.04Ni0.98S2.02O8.05(H2O)5.95. Nickelpicromerite is monoclinic, P21/c, a = 6.1310(7), b = 12.1863(14), c = 9.0076(10) Å, β = 105.045(2)°, V = 649.9(1) Å3, Z = 2. Eight strongest reflections of the powder XRD pattern are [d,Å-I(hkl)]: 5.386–34(110); 4.312–46(002); 4.240–33(120); 4.085–100(012, 10–2); 3.685–85(031), 3.041–45(040, 112), 2.808–31(013, 20–2, 122), 2.368–34(13–3, 21–3, 033). Nickelpicromerite (single-crystal X-ray data, R = 0.028) is isostructural to other picromerite-group minerals and synthetic Tutton’s salts. Its crystal structure consists of [Ni(H2O)6]2+ octahedra linked to (SO4)2− tetrahedra via hydrogen bonds. K+ cations are coordinated by eight anions. Nickelpicromerite is the product of alteration of primary sulfide minerals and the reaction of the acid Ni-sulfate solutions with biotite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Anthony JW, Bideaux RA, Bladh KW, Nichols MC (2003) Handbook of mineralogy. Vol. V. Borates, carbonates, sulfates. Mineral Data Publishing, Tucson

    Google Scholar 

  • Belogub EV, Kuznetsov AM, Kotlyarov VA (2009) New potassium and nickel hydrous sulfate of the picromerite group from Slyudorudnik (Chelyabinsk Oblast). Uralskiy Mineralogicheskiy Sb 16:3–6 (in Russian)

    Google Scholar 

  • Bosi F, Belardi G, Ballirano P (2009) Structural features in Tutton’s salts K2[M2+(H2O)6](SO4)2, with M2+ = Mg, Fe, Co, Ni, Cu, and Zn. Am Mineral 94:74–82

    Article  Google Scholar 

  • Burns PC, Deely KM, Hayden LA (2003) The crystals chemistry of the zippeite group. Can Mineral 41:687–706

    Article  Google Scholar 

  • Chou IM, Seal RR II, Wang A (2013) The stability of sulfate and hydrated sulfate minerals near ambient conditions and their significance in environmental and planetary sciences. J Asian Earth Sci 62:734–758

    Article  Google Scholar 

  • Chukanov NV (2014) Infrared spectra of mineral species: extended library. Springer-Verlag GmbH, Dordrecht, Heidelberg, New York, London

  • Chukanov NV, Rastsvetaeva RK, Aksenov SM, Pekov IV, Belakovskiy DI, Blass GA, Möhn G (2013) Lahnsteinite, Zn4(SO4)(OH)6 · 3H2O, a new mineral from the Friedrichssegen Mine, Germany. Geol Ore Depos 55:663–668

    Article  Google Scholar 

  • Demartin F, Castellano C, Campostrini I (2013) Aluminopyracmonite, (NH4)3Al(SO4)3, a new ammonium aluminium sulfate from La Fossa crater, Vulcano, Aeolian Islands, Italy. Mineral Mag 77:443–451

    Article  Google Scholar 

  • Galli E, Brigatti MF, Malferrari D, Sauro F, De Waele J (2013) Rossiantonite, Al3(PO4)(SO4)2(OH)2(H2O)10 · 4H2O, a new hydrated aluminum phosphate-sulfate mineral from Chimanta massif, Venezuela: description and crystal structure. Am Mineral 98:1906–1913

    Article  Google Scholar 

  • Garavelli CL (1964) Mohrite: un nuovo minerale della zona borifera toscana. Atti Accad Naz Lincei, Cl Sci Fis Mat Nat 36:524–533 (in Italian)

  • Hawthorne FC, Krivovichev SV, Burns PC (2000) The crystal chemistry of sulfate minerals. Rev Mineral Geochem 40:1–112

    Article  Google Scholar 

  • Ivanovski V, Mayerhöfer TG, Popp J, Petruševski VM (2008) Polarized IR reflectance spectra of the monoclinic single crystal K2Ni(SO4)2 · 6H2O: dispersion analysis, dielectric and optical properties. Spectrochim Acta A69:629–641

    Article  Google Scholar 

  • Kampf AR, Mills SJ, Nash BP, Housley RM, Rossman GR, Dini M, Gatta GD (2013) Camaronesite, [Fe3+(H2O)2(PO3OH)]2(SO4) · 1–2H2O, a new phosphate-sulfate from the Camarones Valley, Chile, structurally related to taranakite. Mineral Mag 77:453–465

    Article  Google Scholar 

  • Kannan KK, Viswamitra MA (1965) Crystal structure of magnesium potassium sulfate hexahydrate MgK2(SO4)2 · 6H2O. Z Krist 122:161–174

    Article  Google Scholar 

  • Kasatkin AV, Nestola F, Plášil J, Marty J, Belakovskiy DI, Agakhanov AA, Mills SJ, Pedron D, Lanza A, Favaro M, Bianchin S, Lykova IS, Golias V, Birch WD (2013) Manganoblödite, Na2Mn(SO4)2 · 4H2O, and cobaltoblödite, Na2Co(SO4)2 .4H2O: two new members of the blödite group from the blue lizard mine, San Juan County, Utah, USA. Mineral Mag 77:367–383

    Article  Google Scholar 

  • Kohler K, Franke W (1964) Beiträge zur Thermochemie der Hydrate. V. Isotypiebeziehungen bei den TUTTONschen doppelsulfaten der kalium-MeII-Reihe und ihren Abbaustufen. Z Anorg Allg Chem 331:27–34 (in German)

    Article  Google Scholar 

  • Libowitzky E (1999) Correlation of O–H stretching frequencies and O–H · · · O hydrogen bond lengths in minerals. Monatsh Chem 130:1047–1059

    Article  Google Scholar 

  • Mandarino JA (1981) The Gladstone-Dale relationship: Part IV. The compatibility concept and its application. Can Mineral 19:441–450

  • Marinova D, Karadjova V, Stoilova D (2015) Infrared spectroscopic study of SO4 2− ions included in M′2M″(SeO4)2⋅6H2O (Me′ = K, NH4 +; M″ = Mg, Co, Ni, Cu, Zn) and NH4 + ions included in K2M(XO4)2⋅6H2O (X = S, Se; M″ = Mg, Co, Ni, Cu, Zn). Spectrochim Acta A Mol Biomol Spectrosc 134:526–534

    Article  Google Scholar 

  • Martini JEJ (1980) Mbobomkulite, hydrombobomkulite, and nickelalumite, new minerals from Mbobo Mkulu cave, eastern Transvaal. Ann Geol Surv S Afr 14(2):1–110

    Google Scholar 

  • Maslen EN, Ridout SC, Watson KJ, Moore FH (1988) The structures of Tuttons’s salts. I. Diammonium hexaaqua magnesium(II) sulfate. Acta Crystallogr C44:409–412

    Google Scholar 

  • Mills SJ, Christy AG, Genin JMR, Kameda T, Colombo F (2012) Nomenclature of the hydrotalcite supergroup: natural layered double hydroxides. Mineral Mag 76:1289–1336

    Article  Google Scholar 

  • Milton C, Evans HT, Johnson RG (1982) Dwornikite, (Ni, Fe)SO4 · H2O, a member of the kieserite group from Minasragra, Peru. Mineral Mag 46:351–355

    Article  Google Scholar 

  • Montgomery H, Chastain RV, Natt JJ, Witkowska AM, Lingafelter EC (1967) The crystal structure of Tutton’s salts. VI. Vanadium(II), Iron(II) and Cobalt(II) Ammonium Sulfate Hexahydrates. Acta Crystallogr 22:775–780

    Article  Google Scholar 

  • Murashko MN, Pekov IV, Krivovichev SV, Chernyatyeva AP, Yapaskurt VO, Zadov AE, Zelensky ME (2013) Steklite, KAl(SO4)2: a finding at the Tolbachik Volcano, Kamchatka, Russia, validating its status as a mineral species and crystal structure. Geol Ore Depos 55:594–600

    Article  Google Scholar 

  • Nickel EW, Bridge PJ (1977) Nickelblödite, Na2Ni(SO4)2 · 4H2O, a new mineral from Western Australia. Mineral Mag 41:37–41

    Article  Google Scholar 

  • Nickel EH, Graham J (1987) Paraotwayite. A new nickel hydroxide mineral from Western Australia. Can Mineral 25:409–411

    Google Scholar 

  • Oleinikov BV, Shvartsev SL, Mandrikova NT, Oleinikova NN (1965) Nickelhexahydrite — a new mineral. Zapiski Vses Mineral Obshch 93:534–547 (in Russian)

    Google Scholar 

  • Palache C, Berman H, Frondel C (1951) The System of mineralogy of James Dwight Dana and Edward Salisbury Dana, Yale University 1837-1892, 7th edition. Vol II: Halides, Nitrates, Borates, Carbonates, Sulfates, Phosphates, Arsenates, Tungstates, Molybdates, etc. John Wiley and Sons, Inc: New York

  • Pekov IV, Zubkova NV, Yapaskurt VO, Belakovskiy DI, Chukanov NV, Kasatkin AV, Kuznetsov AM, Pushcharovsky DY (2013) Kobyashevite, Cu5(SO4)2(OH)6 · 4H2O, a new devilline-group mineral from the Vishnevye Mountains, South Urals, Russia. Mineral Petrol 107:201–210

    Article  Google Scholar 

  • Pekov IV, Krivovichev SV, Yapaskurt VO, Chukanov NV, Belakovskiy DI (2014a) Beshtauite, (NH4)2(UO2)(SO4)2 · 2H2O, a new mineral from Mount Beshtau, Northern Caucasus, Russia. Am Mineral 99:1783–1787

    Article  Google Scholar 

  • Pekov IV, Siidra OI, Chukanov NV, Yapaskurt VO, Belakovskiy DI, Murashko MN, Sidorov EG (2014b) Kaliochalcite, KCu2(SO4)2[(OH)(H2O)], a new tsumcorite-group mineral from the Tolbachik volcano, Kamchatka, Russia. Eur J Mineral 26:597–604

    Article  Google Scholar 

  • Plášil J, Fejfarová K, Škoda R, Dušek M, Čejka J, Marty J (2013a) The crystal structure of magnesiozippeite, Mg[(UO2)2O2(SO4)](H2O)3.5, from East Saddle Mine, San Juan County, Utah (U.S.A.). Mineral Petrol 107:211–219

    Article  Google Scholar 

  • Plášil J, Kasatkin AV, Škoda R, Novak M, Kallistova A, Dušek M, Skála R, Fejfarová K, Čejka J, Meisser N, Goethals H, Machovič V, Lapčák L (2013b) Leydetite, Fe(UO2)(SO4)2(H2O)11, a new uranyl sulfate mineral from Mas d’Alary, Lodève, France. Mineral Mag 77:429–441

    Article  Google Scholar 

  • Plášil J, Kampf AR, Kasatkin AV, Marty J, Škoda R, Silva S, Čejka J (2013c) Meisserite, Na5(UO2)(SO4)3(SO3OH)(H2O), a new uranyl sulfate mineral from the Blue Lizard mine, San Juan County, Utah, USA. Mineral Mag 77:2975–2988

    Article  Google Scholar 

  • Polovynko I, Rykhlyuk S, Karbovnyk I, Koman V, Piccinini V, Guidi MC (2009) A new method of growing K2Co x Ni1−x (SO4)2 · 6H2O (x = 0; 0.4; 0.8; 1) mixed crystals and their spectral investigation. J Cryst Growth 311:4704–4707

    Article  Google Scholar 

  • Prumova L (1975) Physicochemical study of double salts of M2 IMII(XO4)2 · 6H2O type. Khim Industriya 47:452–458 (in Bulgarian)

    Google Scholar 

  • Pushcharovsky DY, Lima de Faria J, Rastsvetaeva RK (1998) Main structural subdivisions and structural formulas of sulfate minerals. Z Krist 213:141–150

    Article  Google Scholar 

  • Robinson DJ, Kennard CHL (1972) Potassium hexa-aquacopper(II) sulfate, CuH12K2O14S2 (neutron). Cryst Struct Commun 1:185–188

    Google Scholar 

  • Rocchiccioli C (1964) Etude, par thermogravimétrie et spectrographie d’absorption infrarouge, de quelques sulfates doubles de la série magnésienne. II. Spectrographie d’absorption infrarouge. Mikrochimica Ichnoanalytica Acta 52(5):764–769 (in French)

    Article  Google Scholar 

  • Sheldriсk GM (2008) A short history of SHELX. Acta Crystallogr A64:112–122

    Article  Google Scholar 

  • Szynkiewicz A, Borrok DM, Vaniman DT (2014) Efflorescence as a source of hydrated sulfate minerals in valley settings on Mars. Earth Planet Sci Lett 393:14–25

    Article  Google Scholar 

  • Tahirov TH, Lu TH, Huang CC, Chung CS (1994) A precise structure redetermination of nickel ammonium sulfate hexahydrate, Ni(H2O)6.2(NH4).2(SO4). Acta Crystallogr C50:668–669

    Google Scholar 

  • Wang A, Zhou A (2014) Experimental comparison of the pathways and rates of the dehydration of Al-, Fe-, Mg- and Ca-sulfates under Mars relevant conditions. Icarus 234:162–173

    Article  Google Scholar 

  • Yakhontova LK, Sidorenko GA, Stolyarova TI, Plyusnina II, Ivanova TL (1976) Nickel-bearing sulphates from the oxidized zone of the Norilsk deposits. Zapiski Vses Mineral Obshch 105:710–720 (in Russian)

    Google Scholar 

  • Zubkova NV, Pekov IV, Chukanov NV, Pushcharovsky DY, Kazantsev SS (2008) Nickelhexahydrite from the weathered neteorite Dronino: variations of chemical composition, crystal structure and genesis. Dokl Earth Sci 422:1109–1112

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to Sergey Yepanchintsev for his assistance in fieldworks. We thank referees Jakub Plášil and Uwe Kolitsch, and editor Lutz Nasdala for their valuable comments. This study was supported by the Russian Foundation for Basic Research, grant no. 14-05-00276-a. The support by the SPbSU X-Ray Diffraction Resource Center is acknowledged. S.V.Krivovichev was supported in this work by St. Petersburg State University through the internal grant 3.38.136.2014.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena V. Belogub.

Additional information

Editorial handling: L. Nasdala

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belogub, E.V., Krivovichev, S.V., Pekov, I.V. et al. Nickelpicromerite, K2Ni(SO4)2•6H2O, a new picromerite-group mineral from Slyudorudnik, South Urals, Russia. Miner Petrol 109, 143–152 (2015). https://doi.org/10.1007/s00710-014-0360-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00710-014-0360-4

Keywords

Navigation