Skip to main content
Log in

Secondary arsenic minerals and arsenic mobility in a historical waste rock pile at Kaňk near Kutná Hora, Czech Republic

  • Original Paper
  • Published:
Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

The arsenic mineralization in historical waste rock pile at Kaňk site near Kutná Hora developed over a period of about 500 years. The objective of this study was to determine principal secondary arsenic mineral phases and their environmental stability. The only common primary As-bearing mineral – arsenopyrite - occurs in the mineral assemblage of Kutná Hora base-metal deposit together with quartz, pyrite, sphalerite, and pyrrhotite. Most of arsenic is bound in supergene minerals (scorodite, jarosite-beudantite, bukovskýite, pitticite), which are relatively stable under oxidizing conditions prevailing in the pile. The Kaňk site is a type locality for bukovskýite, kaňkite, zýkaite, and parascorodite. In long-term perspective, the most stable minerals from viewpoint of As-binding appear to be scorodite and beudantite. A higher mobility was observed for As incorporated into jarosite and poorly crystalline to amorphous phases (FeIII -oxyhydroxides, pitticite). This study has not confirmed significant mobility of arsenic within the pile and water infiltrating in recharge periods of the year (late winter-early spring) should not mobilize arsenic at a significant rate. However, monitoring of the stability of secondary As-phases and dissolved arsenic in the environment around the pile is required to avoid future migration of arsenic out of the pile.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Ahmed KM, Bhattacharya P, Hasan MA, Akhter SH, Alam SMM, Bhuyian MAH, Imam MB, Khak AA, Sracek O (2004) Arsenic contamination in groundwater of alluvial aquifers in Bangladesh: an overview. Appl Geochem 19:181–200

    Article  Google Scholar 

  • Appelo CAJ, Postma D (2005) Geochemistry, groundwater and pollution, 2nd Edition, Balkema

  • Bhattacharya P, Claesson M, Bundschuh J, Sracek O, Fagerberg J, Jacks G, Martin RA, Del Storniolo A, Thir JM (2006) Distribution and mobility of arsenic in the Río Dulce alluvial aquifers in Santiago del Estero Province. Argentina. Sci Total Environ 358:97–120

    Article  Google Scholar 

  • Casiot C, Lebrun S, Morin G, Bruneel O, Personné JC, Elbaz-Poulichet F (2005) Sorption and redox processes controlling arsenic fate and transport in a stream impacted by acid mine drainage. Sci Total Environ 347:122–130

    Article  Google Scholar 

  • Čech F, Jansa J, Novák F (1976) Kaňkite, FeAsO4 . 3 ½ H2O, a new mineral. N. Jb. Miner. Mh. 426–436

  • Craw D, Falconer D, Younson JH (2003) Environmental arsenopyrite stability and dissolution: theory, experiment and field observations. Chem Geol 199:71–82

    Article  Google Scholar 

  • Dokoupilová P, Sracek O, Losos Z (2007) Geochemical behaviour and mineralogical transformations during spontaneous combustion of a coal waste pile in Oslavany, Czech Republic. Mineral Mag 71:443–460

    Article  Google Scholar 

  • Drahota P, Filippi M (2009) Secondary As minerals in the environment: a review. Environ Int 35:1243–1255

    Article  Google Scholar 

  • Filip J, Zbořil R, Schneeweiss O, Zeman J, Černík M, Kvapil P, Otyepka M (2007) Environmental applications of chemically-pure natural ferrihydrite. Environ Sci Technol 41(12):4367–4374

    Article  Google Scholar 

  • Filippi M, Machovič V, Drahota P, Böhmová V (2009) Raman microspectroscopy as a valuable additional method to X-ray diffraction and electron microscope/microprobe analysis in the study of iron arsenates in environmental samples. Appl Spectrosc 63(6):621–626

    Article  Google Scholar 

  • Forray FL, Smith AML, Navrotsky A, Wright K, Hudson-Edwards KA, Dubbin WE (2014) Synthesis, characterization and thermochemistry of synthetic Pb-As, Pb-Cu and Pb-Zn jarosites. Geochim Cosmochim Acta 127:107–119

    Article  Google Scholar 

  • Gieré R, Sidenko NV, Lazareva EV (2003) The role of secondary minerals in controlling the migration of arsenic and metals from high-sulfide wastes (Berikul gold mine, Siberia). Appl Geochem 18:1347–1359

    Article  Google Scholar 

  • Gräfe M, Beattie DA, Smith E, Skinner WM, Singh B (2008) Copper and arsenate cosorption at the mineral–water interfaces of goethite and jarosite. J Col Inter Sci 322:399–413

    Article  Google Scholar 

  • Kocourková E, Sracek O, Houzar S, Cempírek J, Losos Z, Filip J, Hršelová P (2011) Geochemical and mineralogical control on the mobility of arsenic in a waste rock pile at Dlouhá Ves, Czech Republic. J Geochem Explor 110:61–73

    Article  Google Scholar 

  • Kopřiva A, Zeman J, Sracek O (2005) High arsenic concetrations in mining waters at Kaňk, Czech Republik. In: Bundschuh J, Bhattacharya P, Chandrasekharam D (eds) Natural arsenic in groudwater: occurence, remediation and management. A. A. Balkema Publishers, London, pp 49–56

    Google Scholar 

  • Langmuir D, Mahoney J, Rowson J (2006) Solubility products of amorphous ferric arsenate and crystalline scorodite (FeAsO4.2H2O) and their application to arsenic behavior in buried mine tailings. Geochim Cosmochim Acta 70(12):2942–2956

    Article  Google Scholar 

  • Leblanc M, Achard B, Ben Othman D, Bertrand-Sarfati J, Personné JC (1996) Accumulation of arsenic from mine waters by ferruginous bacterial accretions (stromatolites). Appl Geochem 11:541–554

    Article  Google Scholar 

  • López DL, Bundschuh J, Birkle P, Armienta MA, Cumbal L, Sracek O, Cornejo L, Ormachea M (2012) Arsenic in volcanic geothermal fluids of Latin America. Sci Total Environ 429:57–75

    Article  Google Scholar 

  • Loun J (2010) Secondary As minerals from the dumps at the locality Kaňk near Kutná Hora. Unpublished M.Sc. thesis. Masaryk University Brno (in Czech)

  • Loun J, Pauliš P, Novák F, Plášil J, Ševců J (2010) Supergene As mineralization of the Stará Plimle mine dump, at Kaňk near Kutná Hora (Czech Republic). Dept Mineral Petrol Nat Mus 18(1):73–77, in Czech

    Google Scholar 

  • Majzlan J, Lalinská B, Chovan M, Jurkovič L, Milovská S, Göttlicher J (2007) The formation, structure, and ageing of As-rich hydrous ferric oxide at abandoned Sb deposit Pezinok (Slovakia). Geochim Cosmochim Acta 71:4206–4220

    Article  Google Scholar 

  • Majzlan J, Lazic B, Armbruster T, Johnson MB, White MA, Fisher RA, Plášil J, Loun J, Škoda R, Novák M (2012) Crystal structure, thermodynamic properties, and paragenesis of bukovskýite, Fe2(AsO4)(SO4)(OH) · 9H2O. J Mineral Petrol Sci 107:133–148

    Article  Google Scholar 

  • Nickson RT, McArthur J, Ravenscroft P, Burgess WG, Ahmed KM (2000) Mechanism of arsenic release to groundwater, Bangladesh and West Bengal. Appl Geochem 15:403–413

    Article  Google Scholar 

  • Nordstrom DK (2002) Worldwide occurrences of arsenic in ground water. Science 296:2143–2145

    Article  Google Scholar 

  • Nordstrom DK, Alpers CN (1999) Negative pH, efflorescent mineralogy, and consequences for environmental restoration at the Iron Mountains superfund site, California. Proc Natl Acad Sci 96:3455–3462

    Article  Google Scholar 

  • Novák F, Povondra P, Vtělenský J (1967) Bukovskýite, Fe3+ 2(AsO4)(SO4)(OH).7H2O, from Kaňk, near Kutná Hora, a new mineral. Acta Univ Carol Geol 4:297–325

    Google Scholar 

  • Onac BP, Veres DS (2003) Sequence of secondary phosphates deposition in a karst environment: evidence from Magurici Cave (Romania). Eur J Mineral 15:741–745

    Article  Google Scholar 

  • Ondruš P, Veselovský F, Hloušek J, Skála R, Vavřín I, Frýda J, Čejka J, Gabašová A (1997) Secondary minerals of the Jáchymov (Joachimstahl) ore district. J Czech Geol Soc 42:3–76

    Google Scholar 

  • Parviainen A, Lindsey MBJ, Pérez-López R, Gibson BD, Ptacek CJ, Blowes DW, Kokola-Ruskeeniemi K (2012) Arsenic attenuation in tailings at a former Cu-W-As mine, SW Finnland. Appl Geochem 27(12):2289–2299

    Article  Google Scholar 

  • Pauliš P (1997) Secondary minerals of Kutná Hora. Mineral, 5, 5: 332–336. Brno. (in Czech)

  • Pouchou JL, Pichoir F (1985) “PAP” procedure for improved quantitative microanalysis. Microbeam Anal 20:104–105

    Google Scholar 

  • Romero L, Alonso H, Campano P, Fanfani L, Cidu R, Dadea C, Keegan T, Thornton I, Farago M (2003) Arsenic enrichment in waters and sediments of the Rio Loa (Second Region, Chile). Appl Geochem 18:1399–1416

    Article  Google Scholar 

  • Romero FM, Armienta MA, González-Hernández G (2007) Solid-phase control on the mobility of potentially toxic elements in an abandoned lead/zinc mine tailings impoundment, Taxco, Mexico. Appl Geochem 22:109–127

    Article  Google Scholar 

  • Salzsauler KA, Sidenko NV, Sheriff BL (2005) Arsenic mobility in alteration products of sulphide-rich, arsenopyrite-bearing mine wastes, Snow Lake, Manitoba, Canada. Appl Geochem 20:2303–2314

    Article  Google Scholar 

  • Smedley PL, Kinniburgh DG (2002) A review of source, behaviour and distribution of arsenic in natural waters. Appl Geochem 17:517–568

    Article  Google Scholar 

  • Smedley PL, Kinniburgh DG, Macdonald DMJ, Nicolli HB, Barro AJ, Tullio JO, Pearce JM, Alonso MS (2005) Arsenic association in sediments from the loess aquifer of La Pampa, Argentina. Appl Geochem 20:989–1016

    Article  Google Scholar 

  • Smith AML, Dubbin WE, Wright K, Hudson-Edwards KA (2006) Dissolution of lead- and lead–arsenic–jarosites at pH 2 and 20 °C: insights from batch experiments. Chem Geol 229(4):344–361

    Article  Google Scholar 

  • Sracek O, Choquette M, Gélinas P, Lefebre R, Nicholson RV (2004) Geochemical characterization of acid mine drainage from a waste rock pile, Mine Doyon, Québec, Canada. J Contam Hydrol 69(1–2):45–71

    Article  Google Scholar 

  • Toujaguez R, Ono FB, Martins V, Cabrera PP, Blanco AV, Bundschuh J, Guillherme LRG (2013) Arsenic bioaccessibility in gold mine tailings of Delita, Cuba. J Hazard Mater 262:1004–1013

    Article  Google Scholar 

  • Walker FP, Schreiber ME, Rimstidt JD (2006) Kinetics of pyrite oxidative dissolution by oxygen. Geochim Cosmochim Acta 70:1668–1676

    Article  Google Scholar 

  • Weiss W, Šulcek Z, Dempir J (1983) Metody chemické analýzy rudních materiálů, část 1/3 (In Czech: Methods of chemical analyses of ore materials. Part 1/3), Czech Geological Institute, Prague. 458 pp

  • Žák T, Jirásková Y (2006) CONFIT: Mössbauer spectra fitting program. Surf Interface Anal 38:710–714

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the Moravian Museum under the grant of the Ministry of Culture of the Czech Republic as part of its long-term conceptual development programme for research institutions (ref. MK000094862). The authors also acknowledge the support by the Operational Program Research and Development for Innovations – European Regional Development Fund (CZ.1.05/2.1.00/03.0058) of the Ministry of Education, Youth and Sports of the Czech Republic. They also thank Prof. A. Beran and two anonymous reviewers for comments, which helped to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Kocourková-Víšková.

Additional information

Editorial handling: A. Beran

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kocourková-Víšková, E., Loun, J., Sracek, O. et al. Secondary arsenic minerals and arsenic mobility in a historical waste rock pile at Kaňk near Kutná Hora, Czech Republic. Miner Petrol 109, 17–33 (2015). https://doi.org/10.1007/s00710-014-0356-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00710-014-0356-0

Keywords

Navigation