Skip to main content
Log in

Kuh-e Dom Fe–Cu–Au prospect, Anarak Metallogenic Complex, Central Iran: a geological, mineralogical and fluid inclusion study

  • Original Paper
  • Published:
Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

The Kuh-e Dom Fe–Cu–Au prospect is located in the Urumieh-Dokhtar Magmatic Belt, and is characterized by copper–iron oxide and gold veins, stockworks and breccias hosted by the Eocene Kuh-e Dom arc intrusion. Mineralization is located within NE–SW to WNW–ESE sinistral faults and likely formed in a subduction-related continental margin that is typical of IOCG deposit systems. The deposits have a distinct metal composition of Fe, Cu, Bi, Co, Mo and LREE with gold (up to 3 g/t), and the mineral assemblages are quartz, hematite, pyrite, chalcopyrite, emplectite, magnetite, free gold, calcite, barite, chlorite, and tourmaline. Three paragenetic stages of mineralized quartz veins are distinguished in the Kuh-e Dom prospect, including: (i) hematite-bearing quartz veins, (ii) quartz-sulfide stockwork and breccia veins, and (iii) quartz-calcite±sulfide infilling veins. Sodic (albitization), potassic, and quartz–calcite±chlorite pervasive alterations are commonly associated with these three mineralization stages. Three types of fluid inclusions have been identified at Kuh-e Dom, including: aqueous two-phase (H2O−NaCl−CaCl2±FeCl2), halite-saturated aqueous (H2O−NaCl±KCl), and CO2-bearing (H2O–CO2±CH4 and CO2±CH4) fluid inclusions. A hypersaline (~35 wt% NaCl equiv.), aqueous magmatic fluid was released at about 400 °C and a pressure of nearly 4 kbar, forming early hematite-bearing quartz veins. These high salinity fluids were progressively diluted further away from Kuh-e Dom intrusion due to substantial input of meteoric water and mixing with the magmatic components during the middle and late stages of mineralization. The mineralogy, alteration, and fluid composition of the Kuh-e Dom Fe–Cu–Au prospect compared well with Fe oxide Cu–Au (IOCG) deposits worldwide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • Agard P, Jolivet L, Vrielynck B, Burov E, Monie P (2007) Plate acceleration: the obduction trigger? Earth Planet Sci Lett 258:428–441

    Article  Google Scholar 

  • Alavi M (2004) Regional stratigraphy of the Zagros fold-thrust belt of Iran and its proforeland evolution. Am J Sci 304:1–20

    Article  Google Scholar 

  • Asadi HH, Voncken JHL, Kühnel RA, Hale M (2000) Petrography, mineralogy and geochemistry of the Zarshouran Carlin-like gold deposit, northwest Iran. Miner Deposita 35:656–671

    Article  Google Scholar 

  • Bakker RJ (2003) Package FLUIDS 1. Computer programs for analysis of fluid inclusion data and for modeling bulk fluid properties. Chem Geol 194:3–23

    Article  Google Scholar 

  • Bakker RJ, Baumgartner M, Doppler G (2012) Diffusion of water through quartz: a fluid inclusion study. Goldschmidt 2012, Abstracts

  • Barton MD, Johnson DA (1996) Evaporitic source model for igneous-related Fe oxide–(REE–Cu–Au–U) mineralization. Geololgy 24:259–262

    Article  Google Scholar 

  • Barton MD, Johnson DA (2000) Alternative brine sources for Fe–oxide (−Cu–Au) systems: implications for hydrothermal alteration and metals. In: Porter TM (ed) Hydrothermal iron oxide copper gold & related deposits: a global perspective. Australian Mineral Foundation, Adelaide, pp 43–60

    Google Scholar 

  • Berberian F, Muir ID, Pankhurst RJ, Berberian M (1982) Late Cretaceous and early Miocene Andean-type plutonic activity in northern Makran and central Iran. J Geol Soc Lond 139:605–614

    Article  Google Scholar 

  • Bodnar RJ (1993) Revised equation and table for determining the freezing point depression of H2O-NaCl solutions. Geochim Cosmochim Acta 57:683–684

    Article  Google Scholar 

  • Brown PE (1989) Flincor: a microcomputer program for the reduction and investigation of fluid inclusion data. Am Mineral 74:1390–1393

    Google Scholar 

  • Bowers TS, Helgeson HC (1983) Calculation of the thermodynamic and geochemical consequences of nonideal mixing in the system H2O–CO2–NaCl on phase relations in geological systems: equation of state for H2O–CO2–NaCl fluids at high pressures and temperatures. Geochim Cosmochim Acta 47:1247–1275

    Article  Google Scholar 

  • Carmichael ISE, Lange RA, Luhr JF (1996) Quaternary minettes and associated volcanic rocks of Mascota, western Mexico: a consequence of plate extension above a subduction modified mantle wedge. Contrib Mineral Petrol 124:302–333

    Article  Google Scholar 

  • Cline JS, Bodnar RJ (1994) Experimental Determination of the PVTX properties of 30 wt% NaCl–H2O using synthetic fluid inclusions. PACROFI V, Pan-American Conference on Research on Fluid Inclusions, Instituto de Investigaciones Eléctricas. Departamento de Geotermia, Cuernavaca, Morelos, Mexico, 12 p

  • Condie KC (1989) Geochemical changes in basalts and andesites across the Archean–Proterozoic boundary: identification and significance. Lithos 23:1–18

    Article  Google Scholar 

  • Daliran F (2008) The carbonate rock-hosted epithermal gold deposit of Agdarreh, Takab geothermal field, NW Iran—hydrothermal alteration and mineralization. Miner Deposita 43:383–404

    Article  Google Scholar 

  • Darling RS (1991) An extended equation to calculate NaCl contents from final clathrate melting temperatures in H2O–CO2–NaCl fluid inclusions: implications for P–T isochore location. Geochim Cosmochim Acta 55:3869–3871

    Article  Google Scholar 

  • Dercourt J, Zonenshain L, Ricou LE, Kazmin G, LePichon X, Knipper AL, Grandjacquet C, Sbortshikov IM, Geyssant J, Lepvrier C, Pechersky DH, Boulin J, Sibuet JC, Savostin LA, Sorokhtin O, Westphal M, Bazhenov ML, Lauer JP, Biju-Duval B (1986) Geological evolution of the Tethys belt from the Atlantic to Pamirs since the Lias. Tectonophysics 123:241–315

    Article  Google Scholar 

  • Dimitrijevic MD (1973) Geology of the Kerman region. Geol Surv Iran Rep 52:334

    Google Scholar 

  • Doyon M, Berger J (1997) Distribution et contrôles structuraux des roches magmatiques Siluro–Dévoniennes de la Gaspésie. Ministère des Ressources Naturelles du Québec, ET 97–01, p 31

  • Goldstein RH, Reynolds TJ (1994) Systematics of fluid inclusions in diagenetic materials: Society for Sedimentary Geology Short Course 31, 199 p.

  • Grant JA (1986) The isocon diagram—a simple solution to Gresens equation for metasomatic alteration. Econ Geol 81:1976–1982

    Article  Google Scholar 

  • Harangi S (1994) Geochemistry and petrogenesis of the early Cretaceous continental rift type volcanic rocks of the Mecsek Mountains, South Hungary. Lithos 33:303–321

    Article  Google Scholar 

  • Hassanzadeh J (1993) Metallogenic and tectono-magmatic events in the SE sector of the Cenozoic active continental margin of Iran (Shahr e Babak area, Kerman province). Unpublished Ph.D. thesis, University of California, Los Angeles, p 204

  • Haynes DW, Cross KC, Bills RT, Reed MH (1995) Olympic Dam ore genesis: a fluid-mixing model. Econ Geol 90:281–307

    Article  Google Scholar 

  • Hedenquist JW, Richards JP (1998) The influence of geochemical techniques on the development of genetic models for porphyry deposits. Rev Econ Geol 10:235–256

    Google Scholar 

  • Heinrich CA (2005) The physical and chemical evolution of low salinity magmatic fluids at the porphyry to epithermal transition: a thermodynamic study. Miner Deposita 39:864–889

    Article  Google Scholar 

  • Hiltunen A (1982) The Precambrian geology and skarn iron ores of the Rautuvaara area, northern Finland. Bulletin-Geological Survey of Finland 318 p

  • Hitzman MW (2000) Iron oxide–Cu–Au deposits: what, where, when, and why. In: Porter TM (ed) Hydrothermal iron oxide copper–gold and related deposits: a global perspective. Australian Mineral Foundation, Adelaide, pp 9–25

    Google Scholar 

  • Hitzman MW, Oreskes N, Einaudi MT (1992) Geological characteristics and tectonic setting of Proterozoic iron oxide (Cu–U–Au–REE) deposits. Precamb Res 58:241–287

  • Hou Z, Zhang H, Pan X, Yang Z (2011) Porphyry Cu (−Mo–Au) deposits related to melting of thickened mafic lower crust: examples from the eastern Tethyan metallogenic domain. Ore Geol Rev 39:21–45

    Article  Google Scholar 

  • Hunt J, Baker T, Thorkelson D (2005) Regional-scale Proterozoic IOCG-mineralized breccia systems: examples from the Wernecke Mountains, Yukon, Canada. Miner Deposita 40:492–514

    Article  Google Scholar 

  • IMPASCO (Iran Minerals Production and Supply Corporation) (2011) Reports on the prospecting exploration of Kuh-e Dom area. Ministry of Mines and Metals, Republic Islamic of Iran (unpublished). 440 p. (in Persian)

  • Kuno H (1968) Differentiation of basalt magmas. In: Hess HH, Poldervaart A (eds) Basalts: the Poldervaart treatise on rocks of basaltic composition. Interscience, New York, pp 623–688

    Google Scholar 

  • Lafleche M, Dupuy C, Dostal J (1991) Archaean orogenic ultrapotassic magmatism: an example from the Southern Abitibi Greenstone Belt. Precambrian Res 52:71–96

    Article  Google Scholar 

  • Le Maitre RW, Bateman P, Dudek A, Keller J, Lameyre J, Le Bas MJ, Sabine PA, Schmid R, Sorensen H, Streckeisen A, Woolley AR, Zanettin B (1989) A classification of igneous rocks and glossary of terms. Blackwell Scientific Publications, Oxford, p 193

    Google Scholar 

  • Liang HY, Sun WD, Su WC, Zartman RE (2009) Porphyry copper-gold mineralization at Yulong, China, promoted by decreasing redox potential during magnetite alteration. Econ Geol 104:587–596

    Article  Google Scholar 

  • Lowell JD, Guilbert JM (1970) Lateral and vertical alteration-mineralization zoning in porphyry ore deposits. Econ Geol 65:373–408

    Article  Google Scholar 

  • Marschick R, Fontboté L (2001) The Candelaria–Punta del Cobre iron oxide Cu–Au(−Zn–Ag) deposits, Chile. Econ Geol 96:1799–1826

    Google Scholar 

  • Mazhari SA, Bea F, Amini S, Molina JF, Montero P, Scarrow JH, Williams IS (2009) The Eocene bimodal Piranshahr massif of the Sanandaj–Sirjan Zone, NW Iran: a marker of the end of the collision in the Zagros orogen. J Geol Soc Lond 166:53–69

    Article  Google Scholar 

  • McDonough WF, Sun SS (1995) The composition of the earth. Chem Geol 120:223–253

    Article  Google Scholar 

  • McInnes BIA, Evans NJ, Belousova E, Griffin WL (2003) Porphyry copper deposits of the Kerman belt, Iran: timing of mineralization and exhumation processes. CSIRO Sci Res Rep 41

  • Mehrabi B, Rabiee A (2005) Au-Bi-Cu mineralization in Kuh-e Dom gold deposit, north of Ardestan. 13th symposium of Iranian society of crystallography and mineralogy, Bahonar University of Kerman, p 120–126

  • Mehrabi B, Yardley BWD, Cann JR (1999) Sediment-hosted disseminated gold mineralisation at Zarshuran, NW Iran. Miner Deposita 34:673–696

    Article  Google Scholar 

  • Meinert LD (1993) Igneous petrogenesis and skarn deposits. In: Kirham RV, Sinclair WD, Thorpe RI, Duke JM (eds) Mineral deposit modelling. Geological Association of Canada, Special Paper 40:569–583

  • Müller D, Groves DI (1997) Potassic igneous rocks and associated gold–copper mineralization, 3rd edn. Springer, Berlin, pp 1–238

  • Oakes CS, Bodnar RJ, Simonson JM (1990) The system NaCl-CaCl2-H2O. The vapor-saturated ice liquids. Geochim Cosmochim Acta 54:603–610

    Article  Google Scholar 

  • Oliver NHS, Cleverley JS, Mark G, Pollard PJ, Fu B, Marshall LJ, Rubenach MJ, Williams PJ, Baker T (2004) Modeling the role of sodic alteration in the genesis of iron–oxide–copper–gold deposits, eastern Mount Isa block, Australia. Econ Geol 99:1145–1176

    Article  Google Scholar 

  • Omrani J, Agard P, Whitechurch H, Benoit M, Prouteau G, Jolivet L (2008) Arcmagmatism and subduction history beneath the Zagros Mountains, Iran: a new report of adakites and geodynamic consequences. Lithos 106:380–398

    Article  Google Scholar 

  • Pearce JA (1983) Role of subcontinental lithosphere in magma genesis at active continental margins. In: Hawkesworth CJ, Norry MJ (eds) Continental basalts and mantle xenoliths. Shiva, Nantwich, pp 230–249

  • Pollard PJ (2001) Sodic (−calcic) alteration in Fe–oxide–Cu–Au districts: an origin via unmixing of magmatic H2O–CO2–NaCl ± CaCl2–KCl fluids. Miner Deposita 36:93–100

    Article  Google Scholar 

  • Pollard PJ (2002) Evidence of a magmatic fluid and metal source for Fe-oxide Cu–Au mineralization. In: Porter TM (ed) Hydrothermal iron oxide copper–gold and related deposits: a global perspective, vol 1. PGC Publishing, Adelaide, pp 27–41

    Google Scholar 

  • Pollard P (2006) An intrusion-related origin for Cu–Au mineralization in iron oxide–copper–gold (IOCG) provinces. Miner Deposita 41:179–187

    Article  Google Scholar 

  • Porter M (1998) An overview of the world’s porphyry and other hydrothermal copper and gold deposits and their distribution. In: Porter M (ed) Porphyry and hydrothermal copper and gold deposits: a global perspective. Perth, Conf Proc. Glenside, South Australia, Aus. Min. Found, pp 3–17

  • Rabiee A (2007) Geochemical exploration of the Kuh-e Dom area and genesis of the Kuh-e Dom gold prospect. Unpublished Msc Thesis, University of Kharazmi, Iran, p. 257. (in Persian)

  • Requia K, Stein H, Fontboté L, Chiaradia M (2003) Re–Os and Pb–Pb geochronology of the Archean Salobo iron oxide copper–gold deposit, Carajás mineral province, northern Brazil. Miner Deposita 38:727–738

    Article  Google Scholar 

  • Richards JP, Wilkinson D, Ulrich T (2006) Geology of the Sari Gunay epithermal gold deposit, northwest Iran. Econ Geol 101:1455–1496

    Article  Google Scholar 

  • Ricou LE, Braud J, Brunn JH (1977) Le Zagros. Mém Soc Géol Fr 8:33–52

    Google Scholar 

  • Roedder E (1984) Fluid inclusions. Rev Miner 12:646

    Google Scholar 

  • Romanko E, Kokorin YU, Krivyakin B, Susov M, Morozov L, Sharkovski M (1984) Outline of metallogeny of Anarak area (Cental Iran): v/o Technoexport. Rreport. TE/No., v. 19, 143 pp

  • Sarjoughian F, Kananian A, Haschke M, Ahmadian J, Ling W, Zong K (2012a) Magma mingling and hybridization in the Kuh-e Dom pluton, Central Iran. J Asian Earth Sci 54:49–63

    Article  Google Scholar 

  • Sarjoughian F, Kananian A, Haschke M, Ahmadian J (2012b) Geochemical signature of Eocene Kuh-e Dom shoshonitic dikes in NE Ardestan, Central Iran: implications for melt evolution and tectonic setting. J Geosci 57:241–264

    Google Scholar 

  • Sillitoe RH (2010) Porphyry copper systems. Econ Geol 105:3–41

    Article  Google Scholar 

  • Schmidt C, Bodnar RJ (1994) Two-phase region and lines of constant homogenization temperature for H2O–40 wt% NaCl–5 mol% CO2. PACROFI V, Pan-American Conference on Research on Fluid Inclusions. Instituto de Investigaciones Eléctricas, Departamento de Geotermia, Cuernavaca, p 92

    Google Scholar 

  • Shafiei B, Shahabpour J (2008) Gold distribution in porphyry copper deposits of Kerman region, Southeastern Iran. J Sci Islam Repub Iran 19(3):247–260

    Google Scholar 

  • Shepherd TJ, Rankin AH, Alderton DHM (1985) A practical guide to fluid inclusion studies. Blackie, Glasgow, 239 p

    Google Scholar 

  • Steele-MacInnis M, Bodnar RJ, Naden J (2011) Numerical model to determine the composition of H2O–NaCl–CaCl2 fluid inclusions based on microthermometric and microanalytical data. Geochim Cosmochim Acta 75:21–40

    Article  Google Scholar 

  • Sterner SM, Hall DL, Bodnar RJ (1988) Synthetic fluid inclusions V: solubility relations in the system NaCl–KCl–H2O under vaporsaturated conditions. Geochim Cosmochim Acta 52:989–1005

    Article  Google Scholar 

  • Sillitoe RH (2003) Iron oxide–copper–gold deposits: an Andean view. Miner Deposita 38:787–812

    Article  Google Scholar 

  • Simard M, Beaudoin G, Bernard J, Hupé A (2006) Metallogeny of the Mont-de-l’Aigle IOCG deposit, Gaspé Peninsula, Québec, Canada. Miner Deposita 41:607–636

    Article  Google Scholar 

  • Stöcklin J (1974) Possible ancient continental margin in Iran. In: Burk CA, Drake CL (eds) The geology of continental margins. Springer, Berlin, pp 873–887

    Chapter  Google Scholar 

  • Stöcklin J, Nabavi MH (1973) Tectonic map of Iran (1:2500000 Scale). Geol Surv, Iran

    Google Scholar 

  • Sun SS, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders AD, Norrey MJ (eds) Magmatism in the Ocean Basins. Geol Soc Lond 42:313–345

  • Tatsumi Y, Eggins S (1995) Subduction zone magmatism. Blackwell, Cambridge, pp 1–211

    Google Scholar 

  • Technoexport (1981) Detail geology prospecting in the Anarak Area Central Iran. Geological Survey of Iran, Report No. 9

  • Thirlwall MF, Upton BGJ, Jenkins C (1994) Interaction between continental lithosphere and the Iceland plume – Sr-Nd-Pb isotope geochemistry of Tertiary basalts, NE Greenland. J Petrol 35:839–879

    Article  Google Scholar 

  • Thorkelson DJ, Mortensen JK, Davidson GJ, Creaser GA, Perez WA, Abbott JG (2001) Early Mesoproterozoic intrusive breccias in Yukon, Canada: the role of hydrothermal systems in reconstructions of North America and Australia. Precambrian Res 111:31–55

    Article  Google Scholar 

  • Ulrich T, Günther D, Heinrich CA (2001) The evolution of a porphyry Cu–Au deposit, based on LA-ICP-MS analysis of fluid inclusions: Bajo de la Alumbrera, Argentina. Econ Geol 96:1743–1774

    Article  Google Scholar 

  • Van Den Kerkhof AM, Hein UF (2001) Fluid inclusion petrography. Lithos 55:320

  • Vanko DA, Bodnar RJ, Sterner SM (1988) Synthetic fluid inclusions. Vapor saturated halite solubility in part of the system NaCl-CaCl2-H2O, with application to fluid inclusions from oceanic hydrothermal systems. Geochim Cosmochim Acta 52:2451–2456

    Article  Google Scholar 

  • Williams PJ (1994) Iron mobility during synmetamorphic alteration in the Selwyn Range area, NW Queensland: implications for the origin of ironstone-hosted Au–Cu deposits. Miner Deposita 29:250–260

    Article  Google Scholar 

  • Williams PJ, Pollard PJ (2003) Australian Proterozoic iron oxide–Cu–Au deposits: an overview with new metallogenic and exploration data from the Cloncurry district, northwest Queensland. Explor Min Geol 10:91–213

    Google Scholar 

  • Williams PJ, Barton MD, Johnson DA, Fontboté L, de Haller A, Mark G, Oliver NHS, Marschik R (2005) Iron oxide copper-gold deposits: geology, space–time distribution, and possible mode of origin. Econ Geol (100th Anniversary Volume): 371–405

  • Winchester JA, Floyd PA (1977) Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chem Geol 20:325–343

    Article  Google Scholar 

  • Yushin A, Romanko E (1981) Isotope-geochemical characteristics of mineral deposits of Anarak area (Cental Iran). V/O Technoexport, rep. No. 16, Moscow, 78 p

  • Zhang YG, Frantz JD (1987) Determination of the homogenization temperatures and densities of supercritical fluids in the system NaCl-KCl-CaCl2-H2O using synthetic fluid inclusions. Chem Geol 64:335–350

    Article  Google Scholar 

Download references

Acknowledgments

This contribution represents part of the Ph.D. thesis of first author at Kharazmi University, Iran. Logistic and financial support was provided by the Iranian Mines and Mineral Industries Development and Renovation Organization (IMIDRO). We would like to thank the reviewers Farhad Ehya, Thomas Ulrich and an anonymous referee for their careful incisive and helpful reviews that significantly improved the quality and style of this paper. Special thanks are also due to Associate Editor P. Garofalo for his dedicated editorial work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ebrahim Tale Fazel.

Additional information

Editorial handling: P. S. Garofalo

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tale Fazel, E., Mehrabi, B. & Tabbakh Shabani, A.A. Kuh-e Dom Fe–Cu–Au prospect, Anarak Metallogenic Complex, Central Iran: a geological, mineralogical and fluid inclusion study. Miner Petrol 109, 115–141 (2015). https://doi.org/10.1007/s00710-014-0354-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00710-014-0354-2

Keywords

Navigation