Skip to main content

Advertisement

Log in

Understanding magma evolution at Campi Flegrei (Campania, Italy) volcanic complex using melt inclusions and phase equilibria

  • Original Paper
  • Published:
Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

The magmatic evolution of two eruptive episodes at Campi Flegrei (Italy) has been investigated using phase equilibria modeling (MELTS) and data from melt inclusions (MIs) in phenocrysts from the Fondo Riccio and Minopoli 1 eruptions. Assuming that isobaric fractional crystallization of a mantle-derived parental magma is the dominant petrogenetic process, major element evolution and corresponding changes in the physical and thermodynamic properties of the magma bodies from which Fondo Riccio and Minopoli1 magmas were erupted can be tracked. Fondo Riccio parental magma was trachyandesitic, approximated by the composition of FR-C1-O2-M1, which evolved mainly through fractional crystallization at low pressure (P ≈ 0.15 GPa, ≈ 7 km depth), along the QFM, QFM + 1 oxygen buffer with an initial dissolved H2O content of ∼3 wt%. Minopoli1 parental magma was trachyandesitic, approximated by the chemistry of Mi1-C1-O5-M1, evolved through fractional crystallization at P ≈ 0.3 GPa (≈ 12 km depth), with oxygen fugacity along QFM + 1buffer and initial H2O content of ∼ 2 wt%. The relationship between melt fraction and T reveals for Fondo Riccio the presence of a pseudo-invariant temperature at which the physical properties of melt change abruptly. The net effect of these changes is to drive the system towards dynamic instability, which it is suggested to be the trigger mechanism for the eruptions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig.2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Anderson AT (1974) Chlorine, sulfur and water in magmas and oceans. Geol Soc Am Bull 85:1485–1492

    Article  Google Scholar 

  • Anderson AT (1976) Magma mixing: petrological process and volcanological tool. J Volcanol Geotherm Res 1:3–33

    Article  Google Scholar 

  • Anderson AT (2003) An introduction to melt (glass ± crystals) inclusions. Fluid Inclusions: analysis and interpretations, vol 2. Minineralogical Assoc. Canada, Quebec

    Google Scholar 

  • Anderson AT, Davis AM, Lu F (2000) Evolution of the Bishop Tuff rhyolitic magma based on melt and magnetite inclusions and zoned phenocrysts. J Petrol 41:449–473

    Article  Google Scholar 

  • Arienzo I, Civetta L, Heumann A, Wörner G, Orsi G (2009) Isotopic evidence for open system processes within the Campanian Ignimbrite (Campi Flegrei–Italy) magma chamber. Bull Volcanol 71:285–300

    Article  Google Scholar 

  • Asimow PD, Ghiorso MS (1998) Algorithmic modifications extending MELTS to calculate subsolidus phase relations. Am Mineral 83:1127–1131

    Google Scholar 

  • Barberi F, Cassano E, La Torre P, Sbrana A (1991) Structural evolution of Campi Flegrei Caldera in light of volcanological and geophysical data. J Volcanol Geotherm Res 48:33–49

    Article  Google Scholar 

  • Belkin HE, De Vivo B, Roedder E, Cortini M (1985) Fluid inclusions geobarometry from ejected Mt. Somma-Vesuvius nodules. Am Mineral 70: 288–303

    Google Scholar 

  • Bodnar RJ, Cannatelli C, De Vivo B, Lima A, Belkin HE, Milia A (2007) Quantitative model for magma degassing and ground deformation (bradyseism) at Campi Flegrei, Italy: implications for future eruptions. Geology 35:791–794

    Article  Google Scholar 

  • Burnham CW (1979) The importance of volatile constituents. In: The evolution of the igneous rocks: 50th anniversary perspective. Princeton University Press, Princeton, NJ

  • Cannatelli C, Lima A, Bodnar RJ, De Vivo B, Webster JD, Fedele L (2007) Geochemistry of melt inclusions from the Fondo Riccio and Minopoli 1 eruptions at Campi Flegrei (Italy). Chem Geol 237:418–432

    Article  Google Scholar 

  • Cashman KV, Sturtevant B, Papale P, Navon O (2000) Magmatic fragmentation. In: Sigurdsson H, Houghton BF, McNutt S, Rhymer H, Stix J (eds) Encyclopedia of volcanology. Academic, San Diego

    Google Scholar 

  • Civetta L, Orsi G, Pappalardo L, Fisher RV, Heiken G, Ort M (1997) Geochemical zoning, mingling, eruptive dynamics depositional processes: the Campanian Ignimbrite, Campi Flegrei caldera, Italy. J Volcanol Geotherm Res 75:183–219

    Article  Google Scholar 

  • Clocchiatti R (1975) Les inclusions vitreuses des cristaux de quartz, Etude optique, hermooptique et chemique, Applications geologiques. Soc Geol France Memoirer, New Series 122, SGF, Paris

  • Cottrell E, Spiegelman M, Langmuir CH (2002) Consequences of diffusive reequilibration for the interpretation of melt inclusions. Geochem Geophys Geosyst 3. doi:10.1029/2001GC000205

  • D’Antonio M, Civetta L, Di Girolamo P (1999) Mantle source heterogeneity in the Campanian Region (South Italy) as inferred from geochemical and isotopic features of mafic volcanic rocks with shoshonitic affinity. Mineral Petrol 67:163–192

    Article  Google Scholar 

  • D’Antonio M, Tonarini S, Arienzo I, Civetta L, Di Renzo V (2007) Components and processes in the magma genesis of the Phlegrean Volcanic District, southern Italy. Spec Pap Geol Soc Am 418:203–220

    Google Scholar 

  • Danyushevsky LV, Carroll MR, Fallon TJ (1997) Origin of high-An Plagioclase in Tongan High-Ca Boninites: implications for plagioclase-melt equilibria at low P (H2O). Can Min 35:313–326

    Google Scholar 

  • Danyushevsky LV, Della Pasqua FN, Sokolov S (2000) Reequilibration of melt inclusions trapped by magnesian olivine phenocrysts from subduction-related magmas: petrological implications. Contrib Mineral Petrol 138:68–83

    Article  Google Scholar 

  • De Astis G, Pappalardo L, Piochi M (2004) Procida Volcanic History: new insights into the evolution of the Phlegraean Volcanic District (Campania region, Italy). Bull Volcanol 66:622–641

    Article  Google Scholar 

  • De Vivo B, Bodnar RJ (2003) Melt inclusions in volcanic systems: methods, applications and problems. Series Developments in Volcanology 5, Elsevier, Amsterdam

  • De Vivo B, Lima A (2006) A hydrothermal model for ground movements (bradyseism) at Campi Flegrei, Italy. In: De Vivo B (ed) Volcanism in the Campania Plain: Vesuvius, Campi Flegrei and Ignimbrites. Developments in Volcanology 9, Elsevier, Amsterdam

  • De Vivo B, Rolandi G, Gans PB, Calvert A, Bohrson WA, Spera FJ, Belkin HE (2001) New constraints on the pyroclastic eruptive history of the Campanian volcanic Plain (Italy). Mineral Petrol 73:121–143

    Article  Google Scholar 

  • De Vivo B, Lima A, Webster JD (2005) Volatiles in magmatic-volcanic systems. Elements 1:19–24

    Article  Google Scholar 

  • Deino AL, Orsi G, de Vita S, Piochi M (2004) The age of the Neapolitan Yellow Tuff caldera-forming eruption (Campi Flegrei caldera-Italy) assessed by 40Ar/39Ar dating method. J Volcanol Geotherm Res 133:157–170

    Article  Google Scholar 

  • Di Girolamo P, Ghiara MR, Lirer L, Munno R, Rolandi G, Stanzione D (1984) Vulcanologia e Petrologia dei Campi Flegrei. Boll Soc Geol It 103:349–413

    Google Scholar 

  • Di Vito MA, Isaia R, Orsi G, Southon J, de Vita S, D’Antonio M, Pappalardo L, Piochi M (1999) Volcanism and deformation since 12,000 years at the Campi Flegrei caldera (Italy). J Volcanol Geotherm Res 91:221–246

    Article  Google Scholar 

  • Di Vito MA, Sulpizio R, Zanchetta G, D’Orazio M (2008) The late Pleistocene pyroclastic deposits of the Campanian Plain: new insights into the explosive activity of Neapolitan volcanoes. J Volcanol Geotherm Res 17:19–48

    Article  Google Scholar 

  • Fowler SJ, Spera FJ, Bohrson WA, Belkin HE, De Vivo B (2007) Phase Equilibria constraints on the chemical and physical evolution of the Campanian Ignimbrite. J Petrol 48:459–493

    Article  Google Scholar 

  • Gaetani GA, Watson EB (2000) Open system behavior of olivine-hosted melt inclusions. Earth Planet Sci Lett 183:27–41

    Article  Google Scholar 

  • Ghiorso MS, Sack RO (1995) Chemical mass transfer in magmatic processes IV: a revised and internally consistent thermodynamic model for the interpolation and extrapolation of liquid–solid equilibria in magmatic systems at elevated temperatures and pressures. Contrib Mineral Petrol 119:197–212

    Article  Google Scholar 

  • Kohlstedt DL, Holtzman BK (2009) Shearing melt out of the Earth: an experimentalist’s perspective on the influence of the deformation on melt extraction. Annu Rev Earth Planet Sci 37:561–593

    Article  Google Scholar 

  • Kress VC, Ghiorso MS (2004) Thermodynamic modeling of post-entrapment crystallization in igneous phases. J Volcanol Geotherm Res 137:247–260

    Article  Google Scholar 

  • Lange RA (1994) The effect of H2O and CO2 on the density and viscosity of silicate melts. Rev Mineral Geochem 30:331–370

    Google Scholar 

  • Lima A, De Vivo B, Spera FJ, Bodnar RJ, Milia A, Nunziata C, Belkin HE, Cannatelli C (2009) Thermodynamic model for uplift and deflation episodes (bradyseism) associated with magmatic-hydrothermal activity at the Campi Flegrei (Italy). Earth Sci Rev 97:44–58

    Article  Google Scholar 

  • Lowenstern JB (1994) Dissolved volatile concentrations in ore-forming magma. Geology 22:893–896

    Google Scholar 

  • Marianelli P, Sbrana A, Proto M (2006) Magma chamber of the Campi Flegrei supervolcano at the time of eruption of the Campanian Ignimbrite. Geology 34:937–940

    Article  Google Scholar 

  • Metrich N, Wallace PJ (2008) Volatiles abundance in basaltic magmas and their degassing paths tracked by melt inclusions. Rev Mineral Geochem 69:363–402

    Article  Google Scholar 

  • Michael PJ, McDonough WF, Nielsen RL, Cornell WC (2002) Depleted melt inclusions in MORB plagioclase: messages from the mantle or mirages from the magma chamber? Chem Geol 183:43–61

    Article  Google Scholar 

  • Moore G (2008) Interpreting H2O and CO2 contents in melt inclusions: constraints from solubility experiments and modelling. In: Putirka KD, Tepley III FJ (eds) Minerals, inclusions and volcanic processes. Rev Mineral Geochem 69:333–361

    Article  Google Scholar 

  • Moore G, Carmichael ISE (1998) The hydrous phase equilibria (to 3 kbar) of an andesite and basaltic andesite from western Mexico: constraints on water content and conditions of phenocrysts growth. Contrib Mineral Petrol 130:304–319

    Article  Google Scholar 

  • Ochs FA, Lange RA (1999) The density of hydrous magmatic liquids. Science 283:1314–1317

    Article  Google Scholar 

  • Orsi G, de Vita S, Di Vito M (1996) The restless, resurgent Campi Flegrei nested caldera (Italy): constraints on its evolution and configuration. J Volcanol Geotherm Res 74:179–214

    Article  Google Scholar 

  • Panjasawatwong Y, Danyushevsky LV, Crawford AJ, Harris KL (1995) An experimental study of the effects of melt composition on plagioclase–melt equilibria at 5 and 10 kbar: implications for the origin of magmatic high-An plagioclase. Contrib Mineral Petrol 118:420–432

    Article  Google Scholar 

  • Pappalardo L, Civetta L, D’Antonio M, Deino AL, Di Vito MA, Orsi G, Carandente A, de Vita S, Isaia R, Piochi M (1999) Chemical and isotopical evolution of the Phlegraean magmatic system before the Campanian Ignimbrite (37 ka) and the Neapolitan Yellow Tuff (12 ka) eruptions. J Volcanol Geotherm Res 91:141–166

    Article  Google Scholar 

  • Pappalardo L, Piochi M, D’Antonio M, Civetta L, Petrini R (2002) Evidence for multi-stage magmatic evolution during the past 60 ka at Campi Flegrei (Italy) deduced from Sr, Nd and Pb isotope data. J Petrol 43:1415–1434

    Article  Google Scholar 

  • Parascandola A (1947) I fenomeni bradisismici del Serapeo di Pozzuoli. Privately published, Napoli, 156 pp

    Google Scholar 

  • Peccerillo A (2005) Plio-Quaternary Volcanism in Italy. Springer, Heidelberg, Germany

  • Roedder E (1979) Origin and significance of magmatic inclusions. Bull Mineral 102:487–510

    Google Scholar 

  • Roedder E (1984) Fluid inclusions. Rev Mineral 12:1–644

    Google Scholar 

  • Roggensack K (2001) Sizing up crystals and their melt inclusions: a new approach to crystallization studies. Earth Planet Sci Lett 187:221–237

    Article  Google Scholar 

  • Rolandi G, Bellucci F, Heizler MT, Belkin HE, De Vivo B (2003) Tectonic controls on the genesis of ignimbrites from the Campanian Volcanic Zone, southern Italy. Mineral Petrol 79:3–31

    Article  Google Scholar 

  • Rosi M, Sbrana A (1987) Phlegraean Fields. Quaderni de “La Ricerca Scientifica”. Consiglio Nazionale delle Ricerche Monograph 114, CNR, Rome

  • Scarpati C, Cole C, Perrotta PD (1993) the Neapolitan Yellow Tuff: a large volume multiphase eruption from Campi Flegrei, southern Italy. Bull Volcanol 55:343–356

    Article  Google Scholar 

  • Signorelli S, Vaggelli G, Francalanci L, Rosi M (1999) Origin of magmas feeding the Plinian phase of the Campanian Ignimbrite eruption, Phlegrean Fields (Italy): constraints based on matrix-glass and glass-inclusion compositions. J Volcanol Geotherm Res 91:199–220

    Article  Google Scholar 

  • Sobolev AV, Kamenetsky VS, Metrich N, Clocchiatti R, Koronova NN, Devirts AL, Ustinov VI (1990) Volatile regime and crystallization conditions in Etna hawaiite lavas. Geochem Int 9:53–65

    Google Scholar 

  • Sparks RSJ, Barclay J, Jaupart C, Mader HM, Phillips JC (1994) Physical aspects of magmatic degassing I. Experimental and theoretical constraints on vesciculation. Rev Mineral 30:413–446

    Google Scholar 

  • Spera FJ, Stein DJ, Lejeune AM, Bottinga Y, Trull TW, Richet P (2000) Rheology of bubble-bearing magmas: discussion and reply [modified]. Earth Planet Sci Lett 175:327–334

    Article  Google Scholar 

  • Tonarini S, Leeman WP, Civetta L, D’Antonio M, Ferrara G, Necco A (2004) B/Nb and δ11B systematics in the Phlegrean Volcanic District (PVD). J Volcanol Geotherm Res 133:123–139

    Article  Google Scholar 

  • Tonarini S, D’Antonio M, Di Vito MA, Orsi G, Carandente A (2009) Geochemical and B–Sr–Nd isotopic evidence for mingling and mixing processes in the magmatic system that fed the Astroni volcano (4.1–3.8 ka) within the Campi Flegrei caldera (southern Italy). Lithos 107:135–151

    Article  Google Scholar 

  • Wallace PJ (2005) Volatiles in subduction zone magmas; concentrations and fluxes based on melt inclusion and volcanic gas data. J Volcanol Geotherm Res 140:217–240

    Article  Google Scholar 

  • Watson EB (1976) Glass inclusions as samples of early magmatic liquid: determinative method and application to South Atlantic basalt. J Volcanol Geother Res 1:73–84

    Article  Google Scholar 

  • Webster JD, Raia F, De Vivo B, Rolandi G (2001) The behavior of chlorine and sulfur during differentiation of the Mt. Somma–Vesuvius magmatic system. Mineral Petrol 73:177–201

    Article  Google Scholar 

  • Yokoyama I (2006) The 1969–1985 Pozzuoli event and active volcanism. Proc Jpn Acad 82:121–126

    Article  Google Scholar 

  • Zollo A, Maercklin N, Vassallo M, Dello Iacono D, Virieux J, Gasparini P (2008) Seismic reflections reveal a massive melt layer feeding Campi Flegrei caldera. Geophys Res Lett 35. doi:10.1029/2008GL034242

Download references

Acknowledgements

Constructive comments by two anonymous reviewers and editorial handling by L. Danyushevsky contributed to the improvement of this paper. Many thanks to F.J. Spera for the numerous discussions and ideas on the arguments developed in this study

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudia Cannatelli.

Additional information

Editorial handling: L. Danyushevsky

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 312 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cannatelli, C. Understanding magma evolution at Campi Flegrei (Campania, Italy) volcanic complex using melt inclusions and phase equilibria. Miner Petrol 104, 29–42 (2012). https://doi.org/10.1007/s00710-011-0182-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00710-011-0182-6

Keywords

Navigation