Skip to main content
Log in

Synergistic mitotoxicity of chloromethanes and fullerene C60 nanoaggregates in Daphnia magna midgut epithelial cells

  • Original Article
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

Adsorption of non-polar compounds by suspended fullerene nanoaggregates (nC60) may enhance their toxicity and affect the fate, transformation, and transport of non-polar compounds in the environment. The potential of stable fullerene nanoaggregates as contaminant carriers in aqueous systems and the influence of chloromethanes (trichloromethane and dichloromethane) were studied on the midgut epithelial cells of Daphnia magna by light and electron microscopy. The size and shape of fullerene nanoaggregates were observed and measured using dynamic light scattering, transmission electron microscopy, and low vacuum scanning electron microscopy. The nC60 in suspension appeared as a bulk of aggregates of irregular shape with a surface consisting of small clumps 20–30 nm in diameter. The presence of nC60 aggregates was confirmed in midgut lumen and epithelial cells of D. magna. After in vivo acute exposure to chloromethane, light and electron microscopy revealed an extensive cytoplasmic vacuolization with disruption and loss of specific structures of D. magna midgut epithelium (mitochondria, endoplasmic reticulum, microvilli, peritrophic membrane) and increased appearance of necrotic cells. The degree of observed changes depended on the type of treatment: trichloromethane (TCM) induced the most notable changes, whereas fullerene nanoaggregates alone had no negative effects. Transmission electron microscopy also indicated increased lysosomal degradation and severe peroxidative damages of enterocyte mitochondria following combined exposure to chloromethane and fullerene nanoaggregates. In conclusion, the adsorption of chloromethane by fullerene nanoaggregates enhances their toxicity and induces peroxidative mitochondrial damage in midgut enterocytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Agency for Toxic Substances and Disease Registry (ATSDR) (1997) Toxicological Profile for Chloroform. US Department of Health and Human Services, Atlanta

  • Andrievsky GV, Klochkov VK, Karyakina EL, Mchedlov-Petrossyan NO (1999) Studies of aqueous colloidal solutions of fullerene C60 by electron microscopy. Chem Phys Lett 300:392–396. doi:10.1016/S0009-2614(98)01393-1

    Article  CAS  Google Scholar 

  • Angelo MJ, Pritchard AB, Hawkins DR, Waller AR, Roberts A (1986) The pharmacokinetics of dichloromethane. II. Disposition in Fischer 344 rats following intravenous and oral administration. Food Chem Toxicol 24:975–980. doi:10.1016/0278-6915(86)90326-1

    Article  CAS  PubMed  Google Scholar 

  • Aschberger K, Johnston HJ, Stone V, Aitken RJ, Tran CL, Hankin SM, Peters SAK, Christensen FM (2010) Review of fullerene toxicity and exposure—appraisal of a human health risk assessment, based on open literature. Regul Toxicol Pharmacol 58:455–473. doi:10.1016/j.yrtph.2010.08.017

    Article  CAS  PubMed  Google Scholar 

  • Aschberger K, Micheletti C, Sokull-Klüttgen B, Christensen FM (2011) Analysis of currently available data for characterising the risk of engineered nanomaterials to the environment and human health—lessons learned from four case studies. Environ Int 37:1143–1156. doi:10.1016/j.envint.2011.02.005

    Article  CAS  PubMed  Google Scholar 

  • Ballesteros E, Gallego M, Valcárcel V (2000) Analytical potential of fullerene as adsorbent for organic and organometallic compounds from aqueous solutions. J Chromatogr A 869:101–110. doi:10.1016/S0021-9673(99)01050-X

    Article  CAS  PubMed  Google Scholar 

  • Baun A, Sorensen SN, Rasmussen RF, Hartmann NB, Koch CB (2008) Toxicity and bioaccumulation of xenobiotic organic compounds in the presence of aqueous suspensions of aggregates of nano-C60. Aquat Toxicol 86:379–387. doi:10.1016/j.aquatox.2007.11.019

    Article  CAS  PubMed  Google Scholar 

  • Bodar CWM, van Donselaar EG, Herwig HJ (1990) Cytopathological investigations of digestive tract and storage cells in Daphnia magna exposed to cadmium and tributylin. Aquat Toxicol 17:325–338. doi:10.1016/0166-445X(90)90015-H

    Article  CAS  Google Scholar 

  • Chekli L, Zhao YX, Tijing LD, Phuntsho S, Donner E, Lombi E, Gao BY, Shon HK (2015) Aggregation behaviour of engineered nanoparticles in natural waters: characterising aggregate structure using on-line laser light scattering. J Hazard Mater 284:190–200. doi:10.1016/j.jhazmat.2014.11.003

    Article  CAS  PubMed  Google Scholar 

  • Cowgill UM, Milazzo DP (1991) The sensitivity of Ceriodaphnia dubia and Daphnia magna to seven chemicals utilizing the three-brood test. Arch Environ Contam Toxicol 20:211–217

    Article  CAS  Google Scholar 

  • Djordjevic A, Srdjenovic B, Seke M, Petrovic D, Injac R, Mrdjanovic J (2015) Review of synthesis and antioxidant potential of fullerenol nanoparticles. J Nanomater doi. doi:10.1155/2015/567073

    Google Scholar 

  • Drasler B, Drobne D, Poklar Ulrih N, Ota A (2016) Biological potential of nanomaterials strongly depends on the suspension media: experimental data on the effects of fullerene C60 on membranes. Protoplasma 253:175–184. doi:10.1007/s00709-015-0803-8

    Article  CAS  PubMed  Google Scholar 

  • Edgington AJ, Roberts AP, Taylor LM, Alloy MM, Reppert J, Rao AM, Mao J, Klaine SJ (2010) The influence of natural organic matter on the toxicity of multiwalled carbon nanotubes. Environ Toxicol Chem 29:2511–2518. doi:10.1002/etc.309

    Article  CAS  PubMed  Google Scholar 

  • Foley S, Crowley C, Smaihi M, Bonfils C, Erlanger BF, Seta P, Larroque C (2002) Cellular localization of a water-soluble fullerene derivative. Biochem Biophy Res Commun 294:116–119. doi:10.1016/S0006-291X(02)00445-X

    Article  CAS  Google Scholar 

  • Fortner JD, Lyon DY, Sayes CM, Boyd AM, Falkner JC, Hotze EM, Alemany LB, Tao YJ, Guo W, Ausman KD, Colvin VL, Hughes JB (2005) C60 in water: nanocrystal formation and microbial response. Environ Sci Technol 1(39):4307–4316. doi:10.1021/es048099n

    Article  Google Scholar 

  • Gharbi N, Pressac M, Hadchouel M, Szwarc H, Wilson SR, Moussa F (2005) [60] fullerene is a powerful antioxidant in vivo with no acute or subacute toxicity. Nano Lett 5:2578–2585. doi:10.1021/nl051866b

  • Haitzer M, Akkanen J, Steinberg C, Kukkonen JVK (2001) No enhancement in bioconcentration of organic contaminants by low levels of DOM. Chemosphere 44:165–171. doi:10.1016/S0045-6535(00)00269-1

    Article  CAS  PubMed  Google Scholar 

  • Hansen U, Peters W (1997/1998) Structure and permeability of the peritrophic membranes of some small crustaceans. Zool Anz 236:103–108

    Google Scholar 

  • Henry TB, Menn FM, Fleming JT, Wilgus J, Compton RN, Sayler GS (2007) Attributing effects of aqueous C60 nano-aggregates to tetrahydrofuran decomposition products in larval zebrafish by assessment of gene expression. Environ Health Perspect 115:1059–1065. doi:10.1289/ehp.9757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hotze EM, Labille J, Alvarez P, Wiesner MR (2008) Mechanisms of photochemistry and reactive oxygen production by fullerene suspensions in water. Environ Sci Technol 42:4175–4180. doi:10.1021/es702172w

    Article  CAS  PubMed  Google Scholar 

  • Hou W-C, Westerhoff C, Posner JD (2013) Biological accumulation of engineered nanomaterials: a review of current knowledge. Environ Sci: Processes Impacts 15:103–122. doi:10.1039/C2EM30686G

    CAS  Google Scholar 

  • Hwang YS, Li Q (2010) Characterizing photochemical transformation of aqueous nC60 under environmentally relevant conditions. Environ Sci Technol 44:3008–3013. doi:10.1021/es903713j

    Article  CAS  PubMed  Google Scholar 

  • IARC (1999a) Dichloromethane. In: IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. Re-evaluation of Some Organic Chemicals, Hydrazine and Hydrogen Peroxide 71. International Agency for Research on Cancer, Lyon, pp 251–315

  • IARC (1999b) Chloroform In: IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. Some Chemicals that Cause Tumours of the Kidney or Urinary Bladder in Rodents and Some Other Substances 73. International Agency for Research on Cancer, Lyon, pp 131–182

  • IPCS (1984) Methylene chloride. Environmental Health Criteria, No. 32. International Programme for Chemical Safety, World Health Organization, Geneva

  • IPCS (1994) Chloroform. Environmental Health Criteria 163. International Programme for Chemical Safety, World Health Organization, Geneva

  • Kamat JP, Devasagayam TPA, Priyadarsini KI, Mohan H, Mittal JP (1998) Oxidative damage induced by the fullerene C60 on photosensitization in rat lever microsomes. Chem Biol Interact 114:145–159. doi:10.1016/S0009-2797(98)00047-7

    Article  CAS  PubMed  Google Scholar 

  • Labudovic M, Borovic I, Icevic I, Kanacki Z, Zikic D, Seke M, Injac R, Djordjevic A (2014) Effects of fullerenol C60 (OH)24 nanoparticles on a single-dose doxorubicin-induced cardiotoxicity in pigs: an ultrastructural study. Ultrastruct Pathol 38:150–163. doi:10.3109/01913123.2013.822045

    Article  Google Scholar 

  • Le Blanc GA (1980) Acute toxicity of priority pollutants to water flea (Daphnia magna). Bull Environ Contam Toxicol 24:684–691

    Article  CAS  Google Scholar 

  • Lens M (2011) Recent progresses in application of fullerenes in cosmetics. Recent Patents on Biotechnology 5:67–73. doi:10.2174/187220811796365707

    Article  CAS  PubMed  Google Scholar 

  • Lin CM, Lu TY (2012) C60 fullerene derivatized nanoparticles and their application to therapeutics. Recent Patents on Nanotechnology 6:105–113. doi:10.2174/187221012800270135

    Article  CAS  PubMed  Google Scholar 

  • Lovern SB, Klaper R (2006) Daphnia magna Mortality when exposed to titanium dioxide and fullerene C60 nanoparticles. Environ Toxicol Chem 25:1132–1137. doi:10.1897/05-278R.1

    Article  CAS  PubMed  Google Scholar 

  • Mark R, Wiesner PE, Bottero JY (2007) Environmental nanotechnology applications and impacts of nanomaterials. The McGraw-Hill, Columbus

  • Markelic M, Velickovic K, Golic I, Klepal V, Otasevic V, Stancic A, Jankovic A, Vucetic M, Buzadzic B, Korac B, Korac A (2013) The origin of lipofuscin in brown adipocytes of hyperinsulinaemic rats: the role of lipid peroxidation and iron. Histol Histopathol 28:493–503. doi:10.14670/HH-28.493

    PubMed  Google Scholar 

  • Mchedlov-Petrossyan NO (2013) Fullerenes in liquid media: an unsettling intrusion into the solution chemistry. Chem Rev 113:5149–5193. doi:10.1021/cr3005026

    Article  CAS  PubMed  Google Scholar 

  • Nierengarten JF (2004) Chemical modification of C60 for materials science applications. New J Chem 28:1177–1191. doi:10.1039/b402661f

    Article  CAS  Google Scholar 

  • Oberdörster E, Zhu S, Blickley TM, McClellan-Green P, Haasch ML (2006) Ecotoxicology of carbon-based engineered nanoparticles: effects of fullerene (C60) on aquatic organisms. Carbon 44:1112–1120. doi:10.1016/j.carbon.2005.11.008

    Article  Google Scholar 

  • Pakarinen K, Petersen EJ, Leppänen MT, Akkanen J, Kukkonen JVK (2011) Adverse effects of fullerenes (nC60) spiked to sediments on Lumbriculus variegatus (Oligochaeta). Environ Pollut 159:3750–3756. doi:10.1016/j.envpol.2011.07.014

  • Pakarinen K, Petersen EJ, Alvila L, Waissi-Leinonen GC, Akkanen J, Leppänen MT, Kukkonen JV (2013) A screening study on the fate of fullerenes nC60 and their toxic implications in natural freshwaters. Environ Toxicol Chem 32:1224–1232. doi:10.1002/etc.2175

    Article  CAS  PubMed  Google Scholar 

  • Park E-J, Yi J, Kim Y, Choi K, Park K (2010) Silver nanoparticles induce cytotoxicity by a Trojan-horse type mechanism. Toxicol In Vitro 24:872–878. doi:10.1016/j.tiv.2009.12.001

  • Parks AN, Portis LM, Schierz PA, Washburn KM, Perron MM, Burgess RM, Ho KT, Chandler GT, Ferguson PL (2013) Bioaccumulation and toxicity of single-walled carbon nanotubes to benthic organisms at the base of the marine food chain. Environ Toxicol Chem 32:1270–1277. doi:10.1002/etc.2174

    Article  CAS  PubMed  Google Scholar 

  • Petersen EJ, Huang Q, Weber WJ (2008) Ecological uptake and depuration of carbon nanotubes by Lumbriculus variegatus. Environ Health Perspect 116:496–500. doi:10.1289/ehp.10883

    CAS  PubMed  PubMed Central  Google Scholar 

  • Petersen EJ, Akkanen J, Kukkonen JV, Weber WJ Jr (2009) Biological uptake and depuration of carbon nanotubes by Daphnia magna. Environ Sci Technol 43:2969–2975. doi:10.1021/es8029363

    Article  CAS  PubMed  Google Scholar 

  • Porter AE, Gass M, Muller K, Skepper JN, Midgley P, Welland M (2007) Visualizing the uptake of C60 to the cytoplasm and nucleus of human monocyte-derived macrophage cells using energy-filtered transmission electron microscopy and electron tomography. Environ Sci Technol 47:3012–3017. doi:10.1021/es062541f

    Article  Google Scholar 

  • Qiao R, Roberts AP, Mount AS, Klaine SJ, Ke PC (2007) Translocation of C60 and its derivatives across a lipid bilayer. Nano Lett 7:614–619. doi:10.1021/nl062515f

    Article  CAS  PubMed  Google Scholar 

  • Quaglia AB, Sabelli VL (1976) Studies on the intestine of Daphnidae Crustacea, Cladocera. Ultrastructure of the midgut of Daphnia magna and Daphnia obtusa. J Morphol 150:711–726. doi:10.1002/jmor.1051500306

    Article  Google Scholar 

  • Rosenkranz P, Chaudhry Q, Stone V, Fernandes TF (2009) A comparison of nanoparticle and fine particle uptake by Daphnia magna. Environ Toxicol Chem 28:2142–2149. doi:10.1897/08-559.1

    Article  CAS  PubMed  Google Scholar 

  • Sanchís J, Olmos M, Vincent P, Farré M, Barceló D (2016) New insights on the influence of organic Co-contaminants on the aquatic toxicology of carbon nanomaterials. Environ Sci Technol 50:961–969. doi:10.1021/acs.est.5b03966

    Article  PubMed  Google Scholar 

  • Scharff P, Risch K, Carta-Abelmann L, Dmytruk IM, Bilyi MM, Golub OA, Khavryuchenko AV, Buzaneva EV, Aksenov VL, Avdeev MV, Prylutskyy YI, Durov SS (2004) Structure of C60 fullerene in water: spectroscopic data. Carbon 42:1203–1206. doi:10.1016/j.carbon.2003.12.053

    Article  CAS  Google Scholar 

  • Schultz TW, Kennedy JR (1976) The fine structure of the digestive system of Daphnia pulex Crustacea: Cladocera. Tissue Cell 8:479–490. doi:10.1016/0040-8166(76)90008-2

    Article  CAS  PubMed  Google Scholar 

  • Song NH, Zhang S, Hong M, Yang H (2010) Impact of dissolved organic matter on bioavailability of chlorotoluron to wheat. Environ Pollut 158(3):906–912. doi:10.1016/j.envpol.2009.09.019

    Article  CAS  PubMed  Google Scholar 

  • SOP (2007) Standard operating procedure adapted from SOP No. 120/3 obtained from the Water Research Centre (WRC), Medmenham, UK. http://www.biosci.rdg.ac.uk/Research/eb/daphnia.htm

  • Stone V, Kinloch I (2007) Nanoparticle interactions with biological systems and subsequent activation of intracellular signaling mechanisms. In: Monteiro-Riviere NA, Tran CL (eds) Nanotoxicology, characterization. Dosing and Health Effects. CRC, Boca Raton, pp. 351–368

    Chapter  Google Scholar 

  • Tervonen K, Waissi G, Petersen EJ, Akkanen J, Kukkonen JVK (2010) Analysis of fullerene-C-60 and kinetic measurements for its accumulation and depuration in Daphnia magna. Environ Toxicol Chem 29:1072–1078. doi:10.1002/etc.124

    CAS  PubMed  Google Scholar 

  • US EPA (1998) Disinfectants and disinfection by-products: final rule. Federal Register 63, 69478. U.S. Environmental Protection Agency, Washington, DC.

  • Yang K, Xing B (2007) Desorption of polycyclic aromatic hydrocarbons from carbon nanomaterials in water. Environ Pollut 145:529–537. doi:10.1016/j.envpol.2006.04.020

    Article  CAS  PubMed  Google Scholar 

  • Yang K, Zhu L, Xing B (2006) Adsorption of polycyclic aromatic hydrocarbons by carbon nanomaterials. Environ Sci Technol 40:1855–1861. doi:10.1021/es052208w

    Article  CAS  PubMed  Google Scholar 

  • Yang XY, Edelmann RE, Oris JT (2010) Suspended C60 nanoparticles protect against short-term UV and fluoranthene photo-induced toxicity, but cause long term cellular damage in Daphnia magna. Aquat Toxicol 100:202–210. doi:10.1016/j.aquatox.2009.08.011

    Article  CAS  PubMed  Google Scholar 

  • Zhang B, Cho M, Fortner JD, Lee J, Huang C-H, Kim J-H (2009) Delineating oxidative processes of aqueous C60 preparations: role of THF peroxide. Environ Sci Technol 43:108–113. doi:10.1021/es8019066

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Ministry of Education, Science and Technological Development, Republic of Serbia, Grant No. III 45005 and Grant No. 173055. We thank Prof. Vladimir Pavlovic for TEM measurements nC60. The authors would like to thank to Anita Lazarevic and Maja Bogdanovic from Center for Electron Microscopy for their excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dragana Milicic.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: Reimer Stick

Mariana Seke and Milica Markelic contributed equally to this study

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seke, M., Markelic, M., Morina, A. et al. Synergistic mitotoxicity of chloromethanes and fullerene C60 nanoaggregates in Daphnia magna midgut epithelial cells. Protoplasma 254, 1607–1616 (2017). https://doi.org/10.1007/s00709-016-1049-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-016-1049-9

Keywords

Navigation