Skip to main content
Log in

Stress-responsive gene RsICE1 from Raphanus sativus increases cold tolerance in rice

  • Original Article
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

The ICE1 transcription factor plays a critical role in plant cold tolerance via triggering CBF/DREB1 cold-regulated signal networks. In this work, a novel MYC-type ICE1-like gene, RsICE1, was isolated from radish (Raphanus sativus L.), and its function in cold tolerance was characterized in rice. The RsICE1 gene was expressed constitutively with higher transcriptional levels in the roots and stems of radish seedlings. The NaCl, cold, and ABA treatments could significantly upregulate RsICE1 expression levels, but dehydration stress had a weak effect on its expression. Ectopic expression of the RsICE1 gene in rice conferred enhanced tolerance to low-temperature stress grounded on a higher survival rate, higher accumulation of soluble sugars and free proline content, a decline in electrolyte leakage and MDA levels, and higher chlorophyll levels relative to control plants. OsDREBL and OsTPP1, downstream cold-regulated genes, were remarkably upregulated at transcription levels in rice overexpressing RsICE1 under low-temperature stress, which indicated that RsICE1 was involved in CBF/DREB1 cold-regulated signal networks. Overall, the above data showed that RsICE1 played an active role in improving rice cold tolerance, most likely resulting from the upregulation of OsDREBL and OsTPP1 expression levels by interacting with the RsICE1 gene under low-temperature stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Amalraj A, Luang S, Kumar MY, Sornaraj P, Eini O, Kovalchuk N, Bazanova N, Li Y, Yang N, Eliby S, Langridge P, Hrmova M, Lopato S (2016) Change of function of the wheat stress-responsive transcriptional repressor TaRAP2.1L by repressor motif modification. Plant Biotechnol J 14:820–832

    Article  CAS  PubMed  Google Scholar 

  • Badawi M, Reddy YV, Agharbaoui Z, Tominaga Y, Danyluk J, Sarhan F, Houde M (2008) Structure and functional analysis of wheat ICE (inducer of CBF expression) genes. Plant Cell Physiol 49:1237–1249

    Article  CAS  PubMed  Google Scholar 

  • Baker SS, Wilhem KS, Thomashow MF (1994) The 50-region of Arabidopsis thaliana cor15a has cis-acting elements that confer cold-, drought- and ABA-regulated gene expression. Plant Mol Biol 24:701–713

    Article  CAS  PubMed  Google Scholar 

  • Chan Z, Wang Y, Cao M, Gong Y, Mu Z, Wang H, Hu Y, Deng X, He XJ, Zhu JK (2016) RDM4 modulates cold stress resistance in Arabidopsis partially through the CBF-mediated pathway. New Phytol 209:1527–1539

    Article  CAS  PubMed  Google Scholar 

  • Chen JQ, Dong Y, Wang YJ, Liu Q, Zhang JS, Chen SY (2003) An AP2/EREBP-type transcription-factor gene from rice is cold-inducible and encodes a nuclear-localized protein. Theor Appl Genet 107:972–979

    Article  CAS  PubMed  Google Scholar 

  • Chen JQ, Meng XP, Zhang Y, Xia M, Wang XP (2008) Overexpression of OsDREB genes lead to enhanced drought tolerance in rice. Biotechnol Lett 30:2191–2198

    Article  PubMed  Google Scholar 

  • Chen Y, Jiang JF, Song AP, Chen SM, Shan H, Luo HL, Gu CS, Sun J, Zhu L (2013) Ambient temperature enhanced freezing tolerance of Chrysanthemum dichrum CdICE1 Arabidopsis via miR398. BMC Biol 11:121–132

    Article  PubMed  PubMed Central  Google Scholar 

  • Chinnusamy V, Ohta M, Kanrar S, Lee BH, Hong X, Agarwal M, Zhu JK (2003) ICE1: a regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis. Genes Dev 17:1043–1054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cordeiro AM, Figueiredo DD, Tepperman J, Borba AR, Lourenço T, Abreu IA, Ouwerkerk PB, Quail PH, Margarida Oliveira M, Saibo NJ (2016) OsDREB1B gene expression through an extended N-box and interacts preferentially with the active form of phytochrome B. Biochim Biophys Acta Biomembr 1859:393–404

    Article  CAS  Google Scholar 

  • Ding Y, Li H, Zhang X, Xie Q, Gong Z, Yang S (2015a) OST1 kinase modulates freezing tolerance by enhancing ICE1 stability in Arabidopsis. Dev Cell 32:278–289

    Article  CAS  PubMed  Google Scholar 

  • Ding ZT, Li C, Shi H, Wang H, Wang W (2015b) Pattern of CsICE1 expression under cold or drought treatment and functional verification through analysis of transgenic Arabidopsis. Genet Mol Res 14:11259–11270

    Article  CAS  PubMed  Google Scholar 

  • Dong CH, Agarwal M, Zhang Y, Xie Q, Zhu JK (2006) The negative regulator of plant cold responses, HOS1, is a RING E3 ligase that mediates the ubiquitination and degradation of ICE1. Proc Natl Acad Sci U S A 103:8281–8286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dong C, Zhang Z, Ren J, Qin Y, Huang J, Wang Y, Cai B, Wang B, Tao J (2013) Stress-responsive gene ICE1 from Vitis amurensis increases cold tolerance in tobacco. Plant Physiol Biochem 71:212–217

    Article  CAS  PubMed  Google Scholar 

  • Dubouzet JG, Sakuma Y, Ito Y, Kasuga M, Dubouzet EG, Miura S, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003) OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought-, high-salt- and cold-responsive gene expression. Plant J 33:751–763

    Article  CAS  PubMed  Google Scholar 

  • Endo T, Chiba B, Wagatsuma K, Saeki K, Ando T, Shomura A, Mizubayashi T, Ueda T, Yamamoto T, Nishio T (2016) Detection of QTLs for cold tolerance of rice cultivar ‘Kuchum’ and effect of QTL pyramiding. Theor Appl Genet 129:631–640

    Article  CAS  PubMed  Google Scholar 

  • Eremina M, Rozhon W, Poppenberger B (2016) Hormonal control of cold stress responses in plants. Cell Mol Life Sci 73:797–810

    Article  CAS  PubMed  Google Scholar 

  • Fang H, Meng Q, Zhang H, Huang J (2016) Knock-down of a RING finger gene confers cold tolerance. Bioengineered 7:39–45

    Article  CAS  PubMed  Google Scholar 

  • Feng HL, Ma NN, Meng X, Zhang S, Wang JR, Chai S, Meng QW (2013) A novel tomato MYC-type ICE1-like transcription factor, SlICE1a, confers cold, osmotic and salt tolerance in transgenic tobacco. Plant Physiol Biochem 73:309–320

    Article  CAS  PubMed  Google Scholar 

  • Figueroa CM, Feil R, Ishihara H, Watanabe M, Kölling K, Krause U, Höhne M, Encke B, Plaxton WC, Zeeman SC, Li Z, Schulze WX, Hoefgen R, Stitt M, Lunn JE (2016) Trehalose 6-phosphate coordinates organic and amino acid metabolism with carbon availability. Plant J 85:410–423

    Article  CAS  PubMed  Google Scholar 

  • Gilmour SJ, Zarka DG, Stockinger EJ, Salazar MP, Houghton JM, Thomashow MF (1998) Low temperature regulation of the Arabidopsis CBF family of AP2 transcriptional activators as an early step in cold-induced COR gene expression. Plant J 16:433–442

    Article  CAS  PubMed  Google Scholar 

  • Gilmour SJ, Sebolt AM, Salazar MP, Everard JD, Thomashow MF (2000) Overexpression of the Arabidopsis CBF3 transcriptional activator mimics multiple biochemical changes associated with cold acclimation. Plant Physiol 124:1854–1865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guy CL (1990) Cold acclimation and freezing stress tolerance: role of protein metabolism. Annu Rev Plant Physiol Plant Mol Biol 41:187–223

    Article  CAS  Google Scholar 

  • Hodges DM, Delong JM, Forney CF, Prange RK (1999) Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta 207:604–611

    Article  CAS  Google Scholar 

  • Huang XS, Zhang Q, Zhu D, Fu X, Wang M, Zhang Q, Moriguchi T, Liu JH (2015) ICE1 of Poncirus trifoliata functions in cold tolerance by modulating polyamine levels through interacting with arginine decarboxylase. J Exp Bot 66:3259–3274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ito Y, Katsura K, Maruyama K, Taji T, Kobayashi M, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2006) Functional analysis of rice DREB1/CBF-type transcription factors involved in cold-responsive gene expression in transgenic rice. Plant Cell Physiol 47:141–153

    Article  CAS  PubMed  Google Scholar 

  • Ji X, Nie X, Liu Y, Zheng L, Zhao H, Zhang B, Huo L, Wang Y (2016) A bHLH gene from Tamarix hispida improves abiotic stress tolerance by enhancing osmotic potential and decreasing reactive oxygen species accumulation. Tree Physiol 6:193–207

    Google Scholar 

  • Jiang C, Iu B, Singh J (1996) Requirement of a CCGAC cis-acting element for cold induction of the BN115 gene from winter Brassica napus. Plant Mol Biol Report 30:679–684

    Article  CAS  Google Scholar 

  • Kim YS, Lee M, Lee JH, Lee HJ, Park CM (2015) The unified ICE-CBF pathway provides a transcriptional feedback control of freezing tolerance during cold acclimation in Arabidopsis. Plant Mol Biol 89:187–201

    Article  CAS  PubMed  Google Scholar 

  • Lee HG, Seo PJ (2015) The MYB96-HHP module integrates cold and abscisic acid signaling to activate the CBF-COR pathway in Arabidopsis. Plant J 82:962–977

    Article  CAS  PubMed  Google Scholar 

  • Lin MG, Chi MC, Naveen V, Li YC, Lin LL, Hsiao CD (2016) Bacillus licheniformis trehalose-6-phosphate hydrolase structures suggest keys to substrate specificity. Acta Crystallogr D Biol Crystallogr 72:59–70

    Article  CAS  Google Scholar 

  • Liu JH, Inoue H, Moriguchi T (2008) Salt stress-mediated changes in free polyamine titers and expression of genes responsible for polyamine biosynthesis of apple in vitro shoots. Environ Exp Bot 62:28–35

    Article  CAS  Google Scholar 

  • Liu LY, Duan LS, Zhang JC, Zhang ZX, Mi GQ, Ren HH (2010) Cucumber (Cucumis sativus L.) over-expressing cold-induced transcriptome regulator ICE1 exhibits changed morphological characters and enhances chilling tolerance. Sci Hortic 124:29–33

    Article  CAS  Google Scholar 

  • Man LL, Meng XC, Zhao RH (2012) Induction of plantaricin MG under co-culture with certain lactic acid bacterial strains and identification of LuxS mediated quorum sensing system in Lactobacillus plantarum KLDS1.0391. Food Control 20:462–469

    Article  Google Scholar 

  • Miura K, Hasegawa PM (2010) Sumoylation and other ubiquitinlike post-translational modification in plants. Trends Cell Biol 20:223–232

    Article  CAS  PubMed  Google Scholar 

  • Miura K, Jin JB, Lee J, Yoo CY, Stirm V, Miura T, Ashworth EN, Bressan RA, Yun DJ, Hasegawa PM (2007) SIZ1-mediated sumoylation of ICE1 controls CBF3/DREB1A expression and freezing tolerance in Arabidopsis. Plant Cell 19:1403–1414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nanjo T, Kobayashi M, Yoshiba Y, Kakubari Y, Yamaguchi-Shinozaki K, Shinozaki K (1999) Antisense suppression of proline degradation improves tolerance to freezing and salinity in Arabidopsis thaliana. Febs Letters 461:205–210

    Article  CAS  PubMed  Google Scholar 

  • Novák A, Boldizsár Á, Ádám É, Kozma-Bognár L, Majláth I, Båga M, Tóth B, Chibbar R, Galiba G (2016) Light-quality and temperature-dependent CBF14 gene expression modulates freezing tolerance in cereals. J Exp Bot 67:1285–1295

    Article  PubMed  Google Scholar 

  • Park HC, Kim H, Koo SC, Park HJ, Cheong MS, Hong H, Baek D, Chung WS, Kim DH, Bressan RA, Lee SY, Bohnert HJ, Yun DJ (2010) Functional characterization of the SIZ/PIAS-type SUMO E3 ligases, OsSIZ1 and OsSIZ2 in rice. Plant Cell Environ 33:1923–1934

    Article  CAS  PubMed  Google Scholar 

  • Pramanik MHR, Imai R (2005) Functional identification of a trehalose 6-phosphate phosphatase gene that is involved in transient induction of trehalose biosynthesis during chilling stress in rice. Plant Mol Biol 58:751–762

    Article  CAS  PubMed  Google Scholar 

  • Sanchita DSS, Sharma A (2014) Analysis of differentially expressed genes in abiotic stress response and their role in signal transduction pathways. Protoplasma 251:81–91

    Article  CAS  PubMed  Google Scholar 

  • Shan W, Kuang JF, Lu WJ, Chen JY (2014) Banana fruit NAC transcription factor MaNAC1 is a direct target of MaICE1 and involved in cold stress through interacting with MaCBF1. Plant Cell Environ 37:2116–2127

    Article  CAS  PubMed  Google Scholar 

  • Stockinger EJ, Gilmour SJ, Thomashow MF (1997) Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. Proc Natl Acad Sci U S A 94:1035–1040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takahashi D, Imai H, Kawamura Y, Uemura M (2016) Lipid profiles of detergent resistant fractions of the plasma membrane in oat and rye in association with cold acclimation and freezing tolerance. Cryobiology 72:123–134

    Article  CAS  PubMed  Google Scholar 

  • Tian H, Li XP, Zhou HL, Zhang JS, Gong ZZ, Chen SY (2005) OsDREB4 genes rice encode AP2-containing proteins that bind specifically to the dehydration responsive element. J Integr Plant Biol 47:467–476

    Article  CAS  Google Scholar 

  • Toledo-Ortiz G, Huq E, Quail PH (2003) The Arabidopsis basic/helix-loop-helix transcription factor family. Plant Cell 15:1749–1770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang QY, Guan YC, Wu YR, Chen HL, Chen F, Chu CC (2008) Overexpression of a rice OsDREB1F gene increases salt, drought, and low temperature tolerance in both Arabidopsis and rice. Plant Mol Biol 67:589–602

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Sun PP, Chen CL, Wang Y, Fu XZ, Liu JH (2011) An arginine decarboxylase gene PtADC from Poncirus trifoliata confers abiotic stress tolerance and promotes primary root growth in Arabidopsis. J Exp Bot 62:2899–2914

    Article  CAS  PubMed  Google Scholar 

  • Wang CL, Zhang SC, Qi SD, Zheng CC, Wu CA (2016) Delayed germination of Arabidopsis seeds under chilling stress by overexpressing an abiotic stress inducible GhTPS11. Gene 575:206–212

    Article  CAS  PubMed  Google Scholar 

  • Wei L, Ma J, Wang S, Wu Y (2016a) Isolation and functional characterization of a novel gene encoding a dehydration responsive element binding transcription factor from Populus euphratica. Protein Pept Lett 23:459–467

    Article  CAS  PubMed  Google Scholar 

  • Wei W, Hu Y, Han YT, Zhang K, Zhao FL, Feng JY (2016b) The WRKY transcription factors in the diploid woodland strawberry Fragaria vesca: identification and expression analysis under biotic and abiotic stresses. Plant Physiol Biochem 105:129–144

    Article  CAS  PubMed  Google Scholar 

  • Xiang DJ, Man LL, Yin KD, Song QY, Wang LN, Zhao MH, Xu ZJ (2013) Overexpression of a ItICE1 gene from Isatis tinctoria enhances cold tolerance in rice. Mol Breed 32:617–628

    Article  CAS  Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K (1994) A novel cis-acting element in an Arabidopsis thaliana gene is involved in responsiveness to drought, low-temperature, or high-salt stress. Plant Cell 6:251–264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K (2005) Organization of cis-acting regulatory elements in osmotic- and cold-stress-responsive promoters. Trends Plant Sci 10:88–94

    Article  CAS  PubMed  Google Scholar 

  • Yamasaki YJ, Randall SK (2016) Functionality of soybean CBF/DREB1 transcription factors. Plant Sci 246:80–90

    Article  CAS  PubMed  Google Scholar 

  • Yu XH, Juan JX, Gao ZL, Zhang Y, Li WY, Jiang XM (2015) Cloning and transformation of INDUCER of CBF EXPRESSION1 (ICE1) in tomato. Genet Mol Res 14:13131–13143

    Article  CAS  PubMed  Google Scholar 

  • Zarka DG, Vogel JT, Cook D, Thomashow MF (2003) Cold induction of Arabidopsis CBF genes involves multiple ICE (inducer of CBF expression) promoter elements and a cold-regulatory circuit that is desensitized by low temperature. Plant Physiol 133:910–918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhai Y, Zhang L, Xia C, Fu S, Zhao G, Jia J, Kong X (2016) The wheat transcription factor, TabHLH39, improves tolerance to multiple abiotic stressors in transgenic plants. Biochem Biophys Res Commun 473:1321–1327

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the Mudanjiang Science and Technology Plan Project of China (No. G2013n0012 and No. Z2013n018).

Author contributions

Lili Man performed the experiments and contributed significantly to the analysis and manuscript preparation; Dianjun Xiang conceived and designed the experiments; Lina Wang, Weiwei Zhang, and Xiaodong Wang performed the data analyses; and Guochao Qi helped perform the analysis with constructive discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dianjun Xiang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: Néstor Carrillo

Lili Man, Dianjun Xiang, Lina Wang and Weiwei Zhang contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Man, L., Xiang, D., Wang, L. et al. Stress-responsive gene RsICE1 from Raphanus sativus increases cold tolerance in rice. Protoplasma 254, 945–956 (2017). https://doi.org/10.1007/s00709-016-1004-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-016-1004-9

Keywords

Navigation