Skip to main content
Log in

ROS homeostasis as a prerequisite for the accomplishment of plant cytokinesis

  • Original Article
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

Reactive oxygen species (ROS) are emerging players in several biological processes. The present work investigates their potential involvement in plant cytokinesis by the application of reagents disturbing ROS homeostasis in root-tip cells of Triticum turgidum. In particular, the NADPH-oxidase inhibitor diphenylene iodonium, the ROS scavenger N-acetyl-cysteine, and menadione that leads to ROS overproduction were used. The effects on cytokinetic cells were examined using light, fluorescence, and transmission electron microscopy. ROS imbalance had a great impact on the cytokinetic process including the following: (a) formation of atypical “phragmoplasts” incapable of guiding vesicles to the equatorial plane, (b) inhibition of the dictyosomal and/or endosomal vesicle production that provides the developing cell plates with membranous and matrix polysaccharidic material, (c) disturbance of the fusion processes between vesicles arriving on the cell plate plane, (d) disruption of endocytic vesicle production that mediates the removal of the excess membrane material from the developing cell plate, and (e) the persistence of large callose depositions in treated cell plates. Consequently, either elevated or low ROS levels in cytokinetic root-tip cells resulted in a total inhibition of cell plate assembly or the formation of aberrant cell plates, depending on the stage of the affected cytokinetic cells. The latter failed to expand towards cell cortex and hence to give rise to complete daughter cell wall. These data revealed for the first time the necessity of ROS homeostasis for accomplishment of plant cytokinesis, since it seems to be a prerequisite for almost every aspect of this process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

ARFs:

ADP-ribosylation factors

CLSM:

Confocal laser scanning microscope

DAB:

Diaminobenzidine

DIC:

Differential interference contrast

DPI:

Diphenylene iodonium

ER:

Endoplasmic reticulum

HGAs:

Homogalacturonans

MAPK:

Mitogen-activated protein kinase

MEN:

Menadione

MTs:

Microtubules

NAC:

N-acetyl-cysteine

NADPH:

Nicotinamide adenine dinucleotide phosphate

NTB:

Nitro blue tetrazolium

PLD:

Phospholipase D

ROS:

Reactive oxygen species

TEM:

Transmission electron microscopy

References

  • Aruoma OI, Halliwell B, Hoey BM, Butler J (1989) The antioxidant action of N-acetylcysteine: its reaction with hydrogen peroxide, hydroxyl radical, superoxide, and hypochlorous acid. Free Radic Biol Med 6:593–597

    Article  CAS  PubMed  Google Scholar 

  • Baluška F, Hlavačka A, Šamaj J, Palme K, Robinson DG, Matoh T, McCurdy DW, Menzel D, Volkmann D (2002) F-actin-dependent endocytosis of cell wall pectins in meristematic root cells. Insights from brefeldin A-induced compartments. Plant Physiol 130:422–431

    Article  PubMed  PubMed Central  Google Scholar 

  • Baluška F, Liners A, Hlavačka A, Schlicht M, Van Custem P, McCurdy DW, Menzel D (2005) Cell wall pectins and xyloglucans are internalized into dividing root cells and accumulate within cell plates during cytokinesis. Protoplasma 225:141–155

    Article  PubMed  Google Scholar 

  • Beck M, Komis G, Müller J, Menzel D, Šamaj J (2010) Arabidopsis homologs of nucleus- and phragmoplast-localized kinase 2 and 3 and mitogen-activated protein kinase 4 are essential for microtubule organization. Plant Cell 22:755–771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beck M, Komis G, Ziemann A, Menzel D, Šamaj J (2011) Mitogen-activated protein kinase 4 is involved in the regulation of mitotic and cytokinetic microtubule transitions in Arabidopsis thaliana. New Phytol 189:1069–1083

    Article  CAS  PubMed  Google Scholar 

  • Benrahmoune M, Thérond P, Abedinzadeh Z (2000) The reaction of superoxide radical with N-acetylcysteine. Free Radic Biol Med 29:775–782

    Article  CAS  PubMed  Google Scholar 

  • Bolwell GP, Wojtaszek P (1997) Mechanisms for the generation of reactive oxygen species in plant defence—a broad perspective. Physiol Mol Plant Pathol 51:347–366

    Article  CAS  Google Scholar 

  • Carol RJ, Dolan L (2006) The role of reactive oxygen species in cell growth: lessons from root hairs. J Exp Bot 57:1829–1834

    Article  CAS  PubMed  Google Scholar 

  • Chang X, Riemann M, Liu Q, Nick P (2015) Actin as deathly switch? How auxin can suppress cell-death related defence. PLoS One 10:e0125498

    Article  PubMed  PubMed Central  Google Scholar 

  • Collings DA, Harper JDI, Vaughn KC (2003) The association of peroxisomes with the developing cell plate in dividing onion root cells depends on actin microfilaments and myosin. Planta 218:204–216

    Article  CAS  PubMed  Google Scholar 

  • Daudi A, O’Brien JA (2012) Detection of hydrogen peroxide by DAB staining in Arabidopsis leaves. Bio-protocol 2, e263

    Article  PubMed  PubMed Central  Google Scholar 

  • Davis Volk AP, Moreland JG (2014) ROS-containing endosomal compartments: implications for signaling. Methods Enzymol 535:201–224

    Article  PubMed  Google Scholar 

  • Dhonukshe P, Baluška F, Schlicht M, Hlavačka A, Samaj J, Friml J, TWJ G Jr (2006) Endocytosis of cell surface material mediates cell plate formation during plant cytokinesis. Dev Cell 10:137–150

    Article  CAS  PubMed  Google Scholar 

  • Dunand C, Crèvecoeur M, Penel C (2007) Distribution of superoxide and hydrogen peroxide in Arabidopsis root and their influence on root development: possible interaction with peroxidases. New Phytol 174:332–341

    Article  CAS  PubMed  Google Scholar 

  • Eleftheriou EP, Adamakis I-DS, Panteris E, Fatsiou M (2015) Chromium-induced ultrastructural changes and oxidative stress in roots of Arabidopsis thaliana. Int J Mol Sci 16:15852–15871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fang C, Bourdette D, Banker G (2012) Oxidative stress inhibits axonal transport: implications for neurodegenerative diseases. Mol Neurodegener 7:29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fehér A, Ötvös K, Pasternak TP, Szandtner AP (2008) The involvement of reactive oxygen species (ROS) in the cell cycle activation (G0-to-G1 transition) of plant cells. Plant Signal Behav 3:823–826

    Article  PubMed  PubMed Central  Google Scholar 

  • Ferro Ε, Goitre L, Retta SF, Trabalzini L (2012) The interplay between ROS and Ras GTPases: physiological and pathological implications. J Signal Transduct 365769

  • Foreman J, Demidchik V, Bothwell JHF, Mylona P, Miedema H, Torres MA, Linstead P, Costa S, Brownlee C, Jones JDG, Davies JM, Dolan L (2003) Reactive oxygen species produced by NADPH oxidase regulate plant cell growth. Nature 422:442–446

    Article  CAS  PubMed  Google Scholar 

  • Frantzios G, Galatis B, Apostolakos P (2001) Aluminium effects on microtubule organization in dividing root-tip cells of Triticum turgidum II. Cytokinetic cells. J Plant Res 114:157–170

    Article  CAS  Google Scholar 

  • Freyberg Ζ, Siddhanta Α, Shields D (2003) ‘Slip, sliding away’: phospholipase D and the Golgi apparatus. Trends Cell Sci 13:540–546

    Article  CAS  Google Scholar 

  • Giannoutsou EP, Apostolakos P, Galatis B (2011) Actin filament-organized local cortical endoplasmic reticulum aggregations in developing stomatal complexes of grasses. Protoplasma 248:373–390

    Article  PubMed  Google Scholar 

  • Görlach A, Klappa P, Kietzmann T (2006) The endoplasmic reticulum: folding, calcium homeostasis, signaling, and redox control. Antioxid Redox Signal 8:1391–1418

    Article  PubMed  Google Scholar 

  • Gupton SL, Collings DA, Allen NS (2006) Endoplasmic reticulum targeted GFP reveals ER organization in tobacco NT-1 cells during cell division. Plant Physiol Biochem 44:95–105

    Article  CAS  PubMed  Google Scholar 

  • Hammond JW, Cai D, Verhey KJ (2008) Tubulin modifications and their cellular functions. Curr Opin Cell Biol 20:71–76

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hanzely L, Vigil EL (1975) Fine structural and cytochemical analysis of phragmosomes (microbodies) during cytokinesis in Allium root tip cells. Protoplasma 86:269–277

    Article  Google Scholar 

  • Hepler PK (1982) Endoplasmic reticulum in the formation of the cell plate and plasmodesmata. Protoplasma 111:121–133

    Article  Google Scholar 

  • Hepler PK (1994) The role of calcium in cell division. Cell Calcium 16:322–330

    Article  CAS  PubMed  Google Scholar 

  • Jabs T, Dietrich RA, Dangl JL (1996) Initiation of runaway cell death in an Arabidopsis mutant by extracellular superoxide. Science 273:1853–1856

    Article  CAS  PubMed  Google Scholar 

  • Jenkins GM, Frohman MA (2005) Phospholipase D: a lipid centric review. Cell Mol Life Sci 62:2305–2316

    Article  CAS  PubMed  Google Scholar 

  • Jiang Ζ, Hu Ζ, Zeng L, Lu W, Zhang H, Li T, Xiao H (2011) The role of the Golgi apparatus in oxidative stress: is this organelle less significant than mitochondria? Free Radic Biol Med 50:907–917

    Article  CAS  PubMed  Google Scholar 

  • Jürgens G (2005) Cytokinesis in higher plants. Annu Rev Plant Biol 56:281–299

    Article  PubMed  Google Scholar 

  • Jürgens G, Park M, Richter S, Touihri S, Krause C, El Kasmi F, Mayer U (2015) Plant cytokinesis: a tale of membrane traffic and fusion. Biochem Soc Trans 43:73–78

    Article  PubMed  Google Scholar 

  • Kawamura F, Hirashima N, Furuno T, Nakanishi M (2006) Effects of 2-methyl-1,4-naphtoquinone (Menadione) on cellular signaling in RBL-2H3 cells. Biol Pharm Bull 29:605–607

    Article  CAS  PubMed  Google Scholar 

  • Knox JP, Linstead PJ, King J, Cooper C, Roberts K (1990) Pectin esterification is spatially regulated both within cell walls and between developing tissues of root apices. Planta 181:512–521

    Article  CAS  PubMed  Google Scholar 

  • Komis G, Apostolakos P, Galatis B (2002) Hyperosmotic stress formation of tubulin macrotubules in root-tip cells of Triticum turgidum: their probable involvement in protoplast volume control. Plant Cell Physiol 43:911–922

    Article  CAS  PubMed  Google Scholar 

  • Kosetsu K, Matsunaga S, Nakagami H, Colcombet J, Sasabe M, Soyano T, Takahashi Y, Hirt H, Machida Y (2010) The MAP kinase MPK4 is required for cytokinesis in Arabidopsis thaliana. Plant Cell 22:3778–3790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Langhans Μ, Robinson DG (2007) 1-Butanol targets the Golgi apparatus in tobacco BY-2 cells, but in a different way to Brefeldin A. J Exp Bot 58:3439–3447

    Article  CAS  PubMed  Google Scholar 

  • Lauber MH, Waizenegger I, Steinmann T, Schwarz H, Mayer U, Hwang I, Lukowitz W, Jürgens G (1997) The Arabidopsis KNOLLE protein is a cytokinesis-specific syntaxin. J Cell Biol 139:1485–1493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leborgne-Castel N, Lherminier J, Der C, Fromentin J, Houot V, Simon-Plas F (2008) The plant defense elicitor cryptogein stimulates clathrin-mediated endocytosis correlated with reactive oxygen species production in Bright Yellow-2 tobacco cells. Plant Physiol 146:1255–1266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Livanos P, Apostolakos P, Galatis B (2012a) Plant cell division: ROS homeostasis is required. Plant Signal Behav 7:771–778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Livanos P, Galatis B, Quader H, Apostolakos P (2012b) Disturbance of reactive oxygen species homeostasis induces atypical tubulin polymer formation and affects mitosis in root-tip cells of Triticum turgidum and Arabidopsis thaliana. Cytoskeleton 69:1–21

    Article  CAS  PubMed  Google Scholar 

  • Livanos P, Galatis B, Apostolakos P (2014a) The interplay between ROS and tubulin cytoskeleton in plants. Plant Signal Behav 9, e28069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Livanos P, Galatis B, Gaitanaki C, Apostolakos P (2014b) Phosphorylation of a p38-like MAPK is involved in sensing cellular redox state and drives atypical tubulin polymer assembly in angiosperms. Plant, Cell Environ 37:1130–1143

    Article  CAS  Google Scholar 

  • Livanos P, Galatis B, Apostolakos P (2015) Deliberate ROS production and auxin synergistically trigger the asymmetrical division generating the subsidiary cells in Zea mays stomatal complexes. Protoplasma. doi:10.1007/s00709-015-0866-6

    PubMed  Google Scholar 

  • McMichael CM, Bednarek SY (2013) Cytoskeletal and membrane dynamics during higher plant cytokinesis. New Phytol 197:1039–1057

    Article  CAS  PubMed  Google Scholar 

  • Meijer HJG, Munnik T (2003) Phospholipid-based signaling in plants. Annu Rev Plant Biol 54:265–306

    Article  CAS  PubMed  Google Scholar 

  • Mittler R, Vanderauwera S, Suzuki N, Miller G, Tognetti VB, Vandepoele K, Gollery M, Shulaev V, Van Breusegem F (2011) ROS signaling: the new wave? Trends Plant Sci 16:300–309

    Article  CAS  PubMed  Google Scholar 

  • Møller ΙΜ, Sweetlove LJ (2010) ROS signalling—specificity is required. Trends Plant Sci 15:370–374

    Article  PubMed  Google Scholar 

  • Müller J, Beck M, Mettbach U, Komis G, Hause G, Menzel D, Samaj J (2010) Arabidopsis MPK6 is involved in cell division plane control during early root development, and localizes to the pre-prophase band, phragmoplast, trans-Golgi network and plasma membrane. Plant J 61:234–248

  • Müller S, Jürgens G (2015) Plant cytokinesis-No ring, no constriction but centrifugal construction of the partitioning membrane. Semin Cell Dev Biol. doi:10.1016/j.semcdb.2015.10.037

    PubMed  Google Scholar 

  • Munnik T, Musgrave A (2001) Phospholipid signaling in plants: holding on to phospholipase D. Sci STKE 111:pe42

  • Napier RM, Fowke LC, Hawes C, Lewis M, Pelham HRB (1992) Immunological evidence that plants use both HDEL and KDEL for targeting proteins to the endoplasmic reticulum. J Cell Sci 102:261–271

    CAS  PubMed  Google Scholar 

  • Nielsen E, Cheung AY, Ueda T (2008) The regulatory RAB and ARF GTPases for vesicular trafficking. Plant Physiol 147:1516–1526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noirot E, Der C, Lherminier J, Robert F, Moricova P, Kiêu K, Leborgne-Castel N, Simon-Plas F, Bouhidel K (2014) Dynamic changes in the subcellular distribution of the tobacco ROS-producing enzyme RBOHD in response to the oomycete elicitor cryptogein. J Exp Bot 65:5011–5022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Otegui MS, Verbrugghe KJ, Skop ΑR (2005) Midbodies and phragmoplasts: analogous structures involved in cytokinesis. Trends Cell Biol 15:404–413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pitzschke A, Djamei A, Bitton F, Hirt H (2009) A major role of the MEKK1-MKK1/2-MPK4 pathway in ROS signalling. Mol Plant 2:120–137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Potocký M, Jones MA, Bezvoda R, Smirnoff N, Zárský V (2007) Reactive oxygen species produced by NADPH oxidase are involved in pollen tube growth. New Phytol 174:742–751

    Article  PubMed  Google Scholar 

  • Samuels AL, Giddings TH Jr, Staehelin AL, (1995) Cytokinesis in tobacco BY-2 and root tip cells: a new model of cell plate formation in higher plants. J Cell Biol 130:1345–1357

    Article  CAS  PubMed  Google Scholar 

  • Sandalio LM, Romero-Puertas MC (2015) Peroxisomes sense and respond to environmental cues by regulating ROS and RNS signalling networks. Ann Bot 116:475–485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schlicht M, Ludwig-Müller J, Burbach C, Volkmann D, Baluska F (2013) Indole-3-butyric acid induces lateral root formation via peroxisome-derived indole-3-acetic acid and nitric oxide. New Phytol 200:473–482

    Article  CAS  PubMed  Google Scholar 

  • Seguí-Simarro JM, Austin JR, White EA, Staehelin AL (2004) Electron tomographic analysis of somatic cell plate formation in meristematic cells of Arabidopsis preserved by high-pressure freezing. Plant Cell 16:836–856

    Article  PubMed  PubMed Central  Google Scholar 

  • Staehelin AL, Hepler PK (1996) Cytokinesis in higher plants. Cell 84:821–824

    Article  CAS  PubMed  Google Scholar 

  • Steinhorst L, Kudla J (2013) Calcium and reactive oxygen species rule the waves of signaling. Plant Physiol 163:471–485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suarez Rodriguez MC, Petersen M, Mundy J (2010) Mitogen-activated protein kinase signaling in plants. Annu Rev Plant Biol 61:621–649

    Article  Google Scholar 

  • Swanson S, Gilroy S (2010) ROS in plant development. Physiol Plant 138:384–392

    Article  CAS  PubMed  Google Scholar 

  • Takáč T, Šamajová O, Vadovič P, Pechan T, Košútová P, Ovečka M, Husičková A, Komis G, Šamaj J (2014) Proteomic and biochemical analyses show a functional network of proteins involved in antioxidant defense of the Arabidopsis anp2anp3 double mutant. J Proteome Res 13:5347–5361

    Article  PubMed  PubMed Central  Google Scholar 

  • Thordal-Christensen H, Zhang Z, Wei Y, Collinge DB (1997) Subcellular localization of H2O2 in plants. H2O2 accumulation in papillae and hypersensitive response during the barley-powdery mildew interaction. Plant J 11:1187–1194

    Article  CAS  Google Scholar 

  • Tsukagoshi H (2012) Defective root growth triggered by oxidative stress is controlled through the expression of cell cycle-related genes. Plant Sci 197:30–39

    Article  CAS  PubMed  Google Scholar 

  • Ushio-Fukai M (2006) Localizing NADPH oxidase-derived ROS. Sci STKE 349(re8)

  • Van Damme D, Inzé D, Russinova E (2008) Vesicle trafficking during somatic cytokinesis. Plant Physiol 147:1544–1552

    Article  PubMed  PubMed Central  Google Scholar 

  • Verma DPS (2001) Cytokinesis and building of the cell plate in plants. Annu Rev Plant Physiol Plant Mol Biol 52:751–784

    Article  CAS  PubMed  Google Scholar 

  • Verma DPS, Hong Z (2005) The ins and outs in membrane dynamics: tubulation and vesiculation. Trends Plant Sci 10:159–165

    Article  CAS  PubMed  Google Scholar 

  • Viotti C, Bubeck J, Stierhof Y-D, Krebs M, Langhans M, van den Berg W, van Dongen W, Richter S, Geldner N, Takano J, Jürgens G, de Vries SC, Robinson DG, Schumacher K (2010) Endocytic and secretory traffic in Arabidopsis merge in the trans-Golgi network/early endosome, an independent and highly dynamic organelle. Plant Cell 22:1344–1357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Willats WGT, Limberg G, Buchholt HC, van Alebeek G-J, Benen J, Christensen TMIE, Visser J, Voragen A, Mikkelsen JD, Knox JP (2000) Analysis of pectic epitopes recognised by hybridoma and phage display monoclonal antibodies using defined oligosaccharides, polysaccharides, and enzymatic degradation. Carbohydr Res 327:309–320

    Article  CAS  PubMed  Google Scholar 

  • Wind S, Beuerlein K, Eucker T, Müller H, Scheurer P, Armitage ME, Ho H, Schmidt HHHW, Wingler K (2010) Comparative pharmacology of chemically distinct NADPH oxidase inhibitors. Br J Pharmacol 165:885–898

    Article  Google Scholar 

  • Wu Η-m, Hazak O, Cheung AY, Yalovsky S (2011) RAC/ROP GTPases and auxin signaling. Plant Cell 23:1208–1218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamaguchi T, Tanabe S, Minami E, Shibuya N (2004) Activation of phospholipase D induced by hydrogen peroxide in suspension-cultured rice cells. Plant Cell Physiol 45:1261–1270

    Article  CAS  PubMed  Google Scholar 

  • Zachariadis M, Quader H, Galatis B, Apostolakos P (2003) Organization of the endoplasmic reticulum in dividing cells of the gymnosperms Pinus brutia and Pinus nigra, and of the pterophyte Asplenium nidus. Cell Biol Int 27:31–40

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National and Kapodistrian University of Athens. We would like to thank Prof. G. Jürgens (University of Tübingen, Tübingen, Germany) for kindly providing the anti-KNOLLE antibody.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Panagiotis Apostolakos.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interests.

Additional information

Handling Editor: Anne-Catherine Schmit

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Livanos, P., Galatis, B., Quader, H. et al. ROS homeostasis as a prerequisite for the accomplishment of plant cytokinesis. Protoplasma 254, 569–586 (2017). https://doi.org/10.1007/s00709-016-0976-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-016-0976-9

Keywords

Navigation