Skip to main content

Advertisement

Log in

De novo assembly and characterization of global transcriptome of coconut palm (Cocos nucifera L.) embryogenic calli using Illumina paired-end sequencing

  • Original Article
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

Production and supply of quality planting material is significant to coconut cultivation but is one of the major constraints in coconut productivity. Rapid multiplication of coconut through in vitro techniques, therefore, is of paramount importance. Although somatic embryogenesis in coconut is a promising technique that will allow for the mass production of high quality palms, coconut is highly recalcitrant to in vitro culture. In order to overcome the bottlenecks in coconut somatic embryogenesis and to develop a repeatable protocol, it is imperative to understand, identify, and characterize molecular events involved in coconut somatic embryogenesis pathway. Transcriptome analysis (RNA-Seq) of coconut embryogenic calli, derived from plumular explants of West Coast Tall cultivar, was undertaken on an Illumina HiSeq 2000 platform. After de novo transcriptome assembly and functional annotation, we have obtained 40,367 transcripts which showed significant BLASTx matches with similarity greater than 40 % and E value of ≤10−5. Fourteen genes known to be involved in somatic embryogenesis were identified. Quantitative real-time PCR (qRT-PCR) analyses of these 14 genes were carried in six developmental stages. The result showed that CLV was upregulated in the initial stage of callogenesis. Transcripts GLP, GST, PKL, WUS, and WRKY were expressed more in somatic embryo stage. The expression of SERK, MAPK, AP2, SAUR, ECP, AGP, LEA, and ANT were higher in the embryogenic callus stage compared to initial culture and somatic embryo stages. This study provides the first insights into the gene expression patterns during somatic embryogenesis in coconut.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Akulov AN, Skripnikov AY, Rumyantseva NI (2010) Expression of 1-Cys peroxiredoxin in morphogenic and nonmorphogenic tatar buckwheat calli. Russ J Plant Physiol 57(3):408–414

    Article  CAS  Google Scholar 

  • Alexandrova KS, Conger BV (2002) Isolation of two somatic embryogenesis-related genes from orchardgrass (Dactylis glomerata). Plant Sci 162:301–307

    Article  CAS  Google Scholar 

  • Anil VS, Rao KS (2000) Calcium mediated signaling during sandalwood somatic embryogenesis: role for exogenous calcium as second messenger. Plant Physiol 123:1301–1311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • APCC (2013) Coconut statistical yearbook. Asian and Pacific Coconut Community, Jakarta

    Google Scholar 

  • Azpeitia A, Chan JL, Saenz L, Oropeza C (2003) Effect of 22(S), 23(S)-homobrassinolide on somatic embryogenesis in plumule explants of Cocos nucifera (L.) cultured in vitro. J Hortic Sci Biotechnol 78:591–596

    Article  CAS  Google Scholar 

  • Bandupriya HDD, Gibbings JG, Dunwell JM (2014) Overexpression of coconut AINTEGUMENTA-like gene, CnANT, promotes in vitro regeneration in transgenic Arabidopsis. Plant Cell Tiss Org 116:67–79

    Article  CAS  Google Scholar 

  • Bhalla PL, Singh MB (2006) Molecular control of stem cell maintenance in shoot apical meristem. Plant Cell Rep 25:249–256

    Article  CAS  PubMed  Google Scholar 

  • Bishop-Hurley SL, Gardner RC, Walter C (2003) Isolation and molecular characterization of genes expressed during somatic embryo development in Pinus radiata. Plant Cell Tiss Org 74:267–280

    Article  CAS  Google Scholar 

  • Blanckaert A, Belingheri L, Sautiere P-E, Vasseur J, Hilbert J-L (2002) 9-kDa acidic and basic nsLTPs-like proteins are secreted in the culture-medium conditioned by somatic embryogenesis in Cichorium. Plant Physiol Biochem 40:339–345

    Article  CAS  Google Scholar 

  • Boutilier K, Offringa R, Sharma VK, Kieft H, Ouellet T, Zhang L, Hattori J, Liu CM, van Lammeren AAM, Miki BLA, Custers JBM, van Lookeren Compagne MM (2002) Ectopic expression of BABY BOOM triggers a conversion from vegetative to embryonic growth. Plant Cell 14:1737–1749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Branton RL, Blake J (1983) Development of organized structures in callus derived from explants of Cocos nucifera L. Ann Bot 52:673–678

    Google Scholar 

  • Braybrook SA, Harada JJ (2008) LECs go crazy in embryo development. Trends Plant Sci 13:624–630

    Article  CAS  PubMed  Google Scholar 

  • Buffard-Morel J, Verdeil JL, Pannetier C (1988) Vegetative propagation of coconut palm through somatic embryogenesis, obtention of plantlets from leaf explant. In: Durand G, Bobichon L, Florent J (eds) Proceedings of the 8th International Biotechnology Symposium, Paris, pp 117

  • Chan JL, Sa’enz L, Talavera C, Hornung R, Robert M, Oropeza C (1998) Regeneration of coconut (Cocos nucifera L.) from plumule explants through somatic embryogenesis. Plant Cell Rep 17:515–521

    Article  CAS  Google Scholar 

  • Chatthai M, Kaukinen KK, Tranbarger TJ, Gupta PK, Misra S (1997) The isolation of a novel metallothionein-related cDNA expressed in somatic and zygotic embryos of Douglas-fir: regulation by ABA, osmoticum, and metal ions. Plant Mol Biol 34:243–254

    Article  CAS  PubMed  Google Scholar 

  • Che P, Love TM, Frame BR, Wang K, Carriquiry AL, Howell SH (2006) Gene expression patterns during somatic embryo development and germination in maize Hi II callus cultures. Plant Mol Biol 62:1–14

    Article  CAS  PubMed  Google Scholar 

  • Chugh A, Khurana P (2002) Gene expression during somatic embryogenesis—recent advances. Curr Science 83:715–730

    CAS  Google Scholar 

  • Clark SE, Williams RW, Meyerowitz EM (1997) The CLAVATA1 gene encodes a putative receptor kinase that controls shoot and floral meristem size in Arabidopsis. Cell 89:575–585

    Article  CAS  PubMed  Google Scholar 

  • Conesa A, Gotz S, Garcia-Gomez JM, Terol J, Talon M, Robles M (2005) Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21:3674–3676

    Article  CAS  PubMed  Google Scholar 

  • Costa S, Shaw P (2007) Open minded’ cells: how cells can change fate. Trends Cell Biol 17:101–106

    Article  CAS  PubMed  Google Scholar 

  • Cushing DA, Forsthoefel NR, Gestaut DR, Vernon DM (2005) Arabidopsis emb175 and other ppr knockout mutants reveal essential roles for pentatricopeptide repeat (PPR) proteins in plant embryogenesis. Planta 221:424–436

    Article  CAS  PubMed  Google Scholar 

  • de Moura VE, Schuabb Heringer A, Barroso T, da Silva Ferreira AT, da Costa MN, Aguilar Perales JE, Santa-Catarina C, Silveira V (2014) Comparative proteomic analysis of somatic embryo maturation in Carica papaya L. Proteome Sci 12:37. doi:10.1186/1477-5956-12-37

    Article  CAS  Google Scholar 

  • Dodeman VL, Ducreux G, Kreis M (1997) Zygotic embryo genesis versus somatic embryogenesis. J Exp Bot 48:1493–1509

    CAS  Google Scholar 

  • Domon JM, Dumas B, Laine E, Meyer Y, David A, David H (1995) Three glycosylated polypeptides secreted by several embryogenic cell cultures of show highly specific serological affinity to antibodies directed against the wheat germin apoprotein monomer. Plant Physiol 108:141–148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dong J, Dunstan D (1996) Expression of abundant mRNAs during somatic embryogenesis of white spruce [Picea glauca (Moench) Voss]. Planta 199:459–466

    Article  CAS  PubMed  Google Scholar 

  • Dunwell JM (1998) Cupins: a new superfamily of functionally diverse proteins that include germins and plant storage proteins. Biotechnol Genet Eng Rev 15:1–32

    Article  CAS  PubMed  Google Scholar 

  • Eeuwens CJ (1976) Mineral requirements for growth and callus initiation of tissue explants excised from mature coconut palms (Cocos nucifera) and cultured in vitro. Physiol Plant 36:23–28

    Article  CAS  Google Scholar 

  • Ek-Ramos MJ, Racagni-DiPalma G, Hernández-Sotomayor S (2003) Changes in phosphatidylinositol and phosphatidylinositol monophosphate kinase activities during the induction of somatic embryogenesis in Coffea arabica. Physiol Plant 19:270–277

    Article  Google Scholar 

  • El Ouakfaoui S, Schnell J, Abdeen A, Colville A, Labbé H, Han S, Baum B, Laberge S, Miki B (2010) Control of somatic embryogenesis and embryo development by AP2 transcription factors. Plant Mol Biol 74:313–326

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Endrizzi K, Moussian B, Haecker A, Levin JZ, Laux T (1996) The shoot meristemless gene is required for maintenance of undifferentiated cells in Arabidopsis shoot and floral meristems and acts at a different regulatory level than the meristem genes WUSCHEL and ZWILLE. Plant J 10:967–979

    Article  CAS  PubMed  Google Scholar 

  • Fan H, Xiao Y, Yang Y, Xia W, Mason AS, Xia Z, Qiao F, Zhao S, Tang H (2013) RNA-Seq analysis of Cocos nucifera: transcriptome sequencing and de novo assembly for subsequent functional genomics approaches. PLoS One 8(3), e59997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feher A, Pasternak TP, Dudits D (2003) Transition of somatic plant cells to an embryogenic state. Plant Cell Tiss Org 74:201–228

    Article  CAS  Google Scholar 

  • Fernando SC, Gamage CKA (2000) Abscisic acid induced somatic embryogenesis in immature embryo explants of coconut (Cocos nucifera L.). Plant Sci 151:193–198

    Article  CAS  PubMed  Google Scholar 

  • Fernando SC, Verdeil JL, Hocher V, Weerakoon LK, Hirimburegama K (2003) Histological analysis of plant regeneration from plumule explants of Cocos nucifera L. Plant Cell Tiss Org 72:281–284

    Article  Google Scholar 

  • Fernando SC, Weerakoon LK, Gunathilake TR (2004) Micropropagation of coconut through plumule culture. Cocos 16:1–10

    Article  Google Scholar 

  • Fernando SC, Vidhanaarachchi VRM, Weerakoon LK, Santha ES (2010) What makes clonal propagation of coconut difficult? As Pac J Mol Biol Biotechnol 18:163–165

    Google Scholar 

  • Fletcher LC, Brand U, Running MP, Simon R, Meyerowitz EM (1999) Signaling of cell fate decisions by CLAVATA3 in Arabidopsis shoot meristems. Science 283:1911–1914

    Article  CAS  PubMed  Google Scholar 

  • Galau GA, Bijaisoradat N, Hughes DW (1987) Accumulation kinetics of cotton late embryogenesis-abundant mRNAs and storage protein mRNAs: coordinate regulation during embryogenesis and the role of abscisic acid. Dev Biol 123:198–212

    Article  CAS  PubMed  Google Scholar 

  • Galland R, Randoux B, Vasseur J, Hilbert JL (2001) A glutathione S-transferase cDNA identified by mRNA differential display is up-regulated during somatic embryogenesis in Cichorium. Biochim Biophys Acta 1522:212–216

    Article  CAS  PubMed  Google Scholar 

  • Galland R, Blervacq AS, Blassiau C, Smagghe B, Decottignies JP, Hilbert JL (2007) Glutathione S-transferase is detected during somatic embryogenesis in chicory. Plant Signal Behav 2:343–348

    Article  PubMed  PubMed Central  Google Scholar 

  • George EF, Sherrington PD (1984) Plant propagation by tissue culture: handbook and directory of commercial laboratories. Exegenetics Eversley, London, pp 387–389

    Google Scholar 

  • Gong H, Jiao Y, Hu WW, Pua EC (2005) Expression of glutathione S-transferase and its role in plant growth and development in vivo and shoot morphogenesis in vitro. Plant Mol Biol 57:53–66

    Article  CAS  PubMed  Google Scholar 

  • Guilfoyle TJ (1999) Auxin-regulated genes and promoters. In: Hooykaas PJJ, Hall MA, Libbenga KR (eds) Biochemistry and molecular biology of plant hormones. The Netherlands, Elsevier, pp 423–459

    Chapter  Google Scholar 

  • Hecht V, Vielle-Calzada JP, Hartog MV, Schmidt EDL, Boutilier K, Grossniklaus U, de Vries SC (2001) The Arabidopsis SOMATIC EMBRYOGENESIS RECEPTOR KINASE 1 gene is expressed in developing ovules and embryos and enhances embryogenic competence in culture. Plant Physiol 127:803–816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hirt H (2000) Connecting oxidative stress, auxin, and cell cycle regulation through a plant mitogen-activated protein kinase pathway. Proc Natl Acad Sci U S A 97:2405–2407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hornung R (1995) Micropropagation of Cocos nucifera L. from plumule tissue excised from mature zygotic embyos. Plantations Res Dev 2:38–41

    Google Scholar 

  • Huang YY, Lee CP, Fu JL, Chang BC, Matzke AJ, Matzke M (2014) De novo transcriptome sequence assembly from coconut leaves and seeds with a focus on factors involved in RNA-directed DNA methylation. G3 (Bethesda) 4:2147–2157

    Article  Google Scholar 

  • Imin N, Nizamidin M, Daniher D, Nolan KE, Rose RJ, Rolfe BG (2005) Proteomic analysis of somatic embryogenesis in Medicago truncatula: explant cultures grown under 6-benzylaminopurine and 1-naphthaleneacetic acid treatments. Plant Physiol 137:1250–1260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jansen MAK, Booij H, Schel JHN, De Vries SC (1990) Calcium increases the yield of somatic embryos in carrot embryogenic suspension cultures. Plant Cell Rep 9:221–223

    Article  CAS  PubMed  Google Scholar 

  • Jiang HW, Liu MJ, Chen IC, Huang CH, Chao LY, Hsieh HL (2010) A glutathione S-transferase regulated by light and hormones participates in the modulation of Arabidopsis thaliana seedling development. Plant Physiol 154:1646–1658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jimenez VM (2001) Regulation of in vitro somatic embryogenesis with emphasis on the role of endogenous hormones. Rev Bras Fisiol Veg 13:196–223

    Article  Google Scholar 

  • Jimenez VM (2005) Involvement of plant hormones and plant growth regulators on in vitro somatic embryogenesis. Plant Growth Regul 47:91–110

    Article  CAS  Google Scholar 

  • Joosen R, Cordewener J, Supena ED, Vorst O, Lammers M, Maliepaard C, Zeilmaker T, Miki B, America T, Custers J et al (2007) Combined transcriptome and proteome analysis identifies pathways and markers associated with the establishment of rapeseed microspore- derived embryo development. Plant Physiol 144:155–172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Joshi R, Kumar P (2013) Regulation of somatic embryogenesis in crops: a review. Agr Rev 34:1–20

    Google Scholar 

  • Kanehisa M, Goto S, Furumichi M, Tanabe M, Hirakawa M (2010) KEGG for representation and analysis of molecular networks involving diseases and drugs. Nucleic Acids Res 38:355–360

    Article  CAS  Google Scholar 

  • Karami O, Aghavaisi B, Pour AM (2009) Molecular aspects of somatic-to-embryogenic transition in plants. J Chem Biol 2:177–190

    Article  PubMed  PubMed Central  Google Scholar 

  • Karunaratne S, Periyapperuma LK (1989) Culture of immature embryos of coconut, Cocos nucifera L.: callus proliferation and somatic embryogenesis. Plant Sci 62:247–253

    Article  Google Scholar 

  • Kaul T, Ram B, Pandey S, Reddy CS, Reddy MK (2014) Unravelling the regulation of somatic embryogenesis by extracellular calcium and auxin efflux blockers in hypocotyl explants of Albizzia lebbeck L.: similarity in action. Int J Bioassays 3:3536–3542

    Google Scholar 

  • Kawahara R, Sunabori S, Fukuda H, Komamlne A (1992) A gene expressed preferentially in the globular stage of somatic embryogenesis encodes elongation factor l a in carrot. Eur J Biochem 209:157–162

    Article  CAS  PubMed  Google Scholar 

  • Kiselev KV, Gorpenchenko TY, Tchernoded GK, Dubrovina AS, Grishchenko OV, Bulgakov VP, Zhuravlev YN (2008) Calcium-dependent mechanism of somatic embryogenesis in Panax ginseng cell cultures expressing the rolc oncogene. Mol Biol 42:243–252

    Article  CAS  Google Scholar 

  • Kiyosue T, Yamaguchi-Shinozaki K, Shinozaki K, Higashi K, Satoh S, Kamada H, Harada H (1992) Isolation and characterization of a cDNA that encodes ECP31, an embryogenic-cell protein from carrot. Plant Mol Biol 19:239–249

    Article  CAS  PubMed  Google Scholar 

  • Konieczny R, Bohdanowicz J, Czaplicki AZ, Przywara L (2005) Extracellular matrix surface network during plant regeneration in wheat anther culture. Plant Cell Tiss Org 83:201–208

    Article  Google Scholar 

  • Kovtun Y, Chiu WL, Tena G, Sheen J (2000) Functional analysis of oxidative stress-activated MAPK cascade in plants. Proc Natl Acad Sci U S A 97:2940–2945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lai Z, Lin Y (2013) Analysis of the global transcriptome of longan (Dimocarpus longan Lour.) embryogenic callus using Illumina paired-end sequencing. BMC Genomics 14:561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin HC, Morcillo F, Dussert S, Tranchant-Dubreuil C, Tregear JW, Tranbarger TJ (2009) Transcriptome analysis during somatic embryogenesis of the tropical monocot Elaeis guineensis: evidence for conserved gene functions in early development. Plant Mol Biol 70:173–192

    Article  CAS  PubMed  Google Scholar 

  • Lippert D, Zhuang J, Ralph S, Dave Ellis E, Gilbert M, Olafson R, Ritland K, Ellis B, Carl DJ, Bohlmann J (2005) Proteome analysis of early somatic embryogenesis in Picea glauca. Proteomics 5:461–473

    Article  CAS  PubMed  Google Scholar 

  • Liu L, White MJ, MacRae TH (1999) Transcription factors and their genes in higher plants: functional domains, evolution and regulation. Eur J Biochem 262:247–257

    Article  CAS  PubMed  Google Scholar 

  • Lulsdorf MM, Tautorus TE, Kikcio SI, Dunstan DI (1992) Growth parameters of embryogenic suspension culture of interior spruce (Picea glauca-engelmannii complex) and black spruce (Picea mariana Mill.). Plant Sci 82:227–234

    Article  CAS  Google Scholar 

  • Mahdavi-Darvari F, Noor NM, Ismanizan I (2014) Epigenetic regulation and gene markers as signals of early somatic embryogenesis. Plant Cell Tiss Org 120:407–422

    Article  CAS  Google Scholar 

  • Malabadi RB, Chalannavar RK, Meti NT, Mulgund GS, Nataraja K, Vijaya Kumar S, Narayanaswamy VK, Odhav B (2013) Detection of glutathione-S-transferase gene (GST2, GST3) during induction of somatic embryogenesis in grape (Vitis vinifera L.). Res Biotechnol 4:1–11

    Google Scholar 

  • Mathieu M, Lelu-Walter MA, Blervacq AS, David H, Hawkins S, Neutelings G (2006) Germin-like genes are expressed during somatic embryogenesis and early development of conifers. Plant Mol Biol 61:615–627

    Article  CAS  PubMed  Google Scholar 

  • Maximova SN, Florez S, Shen X, Niemenak N, Zhang Y, Curtis W, Guiltinan MJ (2014) Genome-wide analysis reveals divergent patterns of gene expression during zygotic and somatic embryo maturation of Theobroma cacao L., the chocolate tree. BMC Plant Biol 14:185

    Article  PubMed  PubMed Central  Google Scholar 

  • McCabe PF, Valentine TA, Forsberg LS, Pennell RI (1997) Soluble signals from cells identified at the cell wall establish a developmental pathway in carrot. Plant Cell 9:2225–2241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Misra S, Attree SM, Leal I, Fowke LC (1993) Effect of abscisic acid, osmoticum, and desiccation on synthesis of storage proteins during the development of white spruce somatic embryos. Ann Bot 71:11–22

    Article  CAS  Google Scholar 

  • Montero-Cortes M, Rodríguez-Paredes F, Burgeff C, Perez-Nunez T, Cordova I, Oropeza C, Verdeil JL, Saenz L (2010a) Characterization of a cyclin-dependent kinase (CDKA) gene expressed during somatic embryogenesis of coconut palm. Plant Cell Tiss Org 102:251–258

    Article  CAS  Google Scholar 

  • Montero-Cortes M, Saenz L, Cordova I, Quiroz A, Verdeil JL, Oropeza C (2010b) GA3 stimulates the formation and germination of somatic embryos and the expression of a KNOTTED-like homeobox gene of Cocos nucifera L. Plant Cell Rep 29:1049–1059

    Article  CAS  PubMed  Google Scholar 

  • Moons A (2003) Osgstu3 and osgtu4, encoding tau class glutathione S-transferases, are heavy metal- and hypoxic stress-induced and differentially salt stress responsive in rice roots. FEBS Lett 553:427–432

    Article  CAS  PubMed  Google Scholar 

  • Moons A (2005) Regulatory and functional interactions of plant growth regulators and plant glutathione S-transferases (GSTs). Vitam Horm 72:155–202

    Article  CAS  PubMed  Google Scholar 

  • Morcillo F, Gallard A, Pillot M, Jouannic S, Aberlenc-Bertossi F, Collin M, Verdeil JL, Tregear JW (2007) EgAP2-1, an AINTEGUMENTA-like (AIL) gene expressed in meristematic and proliferating tissues of embryos in oil palm. Planta 226:1353–1362

    Article  CAS  PubMed  Google Scholar 

  • Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 5:621–628

    Article  CAS  PubMed  Google Scholar 

  • Nagalakshmi U, Wang Z, Waern K, Shou C, Raha DGM, Snyder M (2008) The transcriptional landscape of the yeast genome defined by RNA sequencing. Science 320:1344–1349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Namasivayam P (2007) Acquisition of embryogenic competence during somatic embryogenesis. Plant Cell Tiss Org 90:1–8

    Article  CAS  Google Scholar 

  • Neelakandan AK, Wang K (2012) Recent progress in the understanding of tissue culture-induced genome level changes in plants and potential applications. Plant Cell Rep 31:597–620

    Article  CAS  PubMed  Google Scholar 

  • Neil SJ, Desikan R, Clarke A, Hurst RD, Hancock JT (2002) Hydrogen peroxide and nitric oxide as signalling molecules in plants. J Exp Bot 372:1237–1247

    Article  Google Scholar 

  • Nogueira FCS, Goncalves EF, Jereissati ES, Santos M, Costa JH, Oliveira-Neto OB, Soares AA, Domont GB, Campos FAP (2007) Proteome analysis of embryogenic cell suspensions of cowpea (Vigna unguiculata). Plant Cell Rep 26:1333–1343

    Article  CAS  PubMed  Google Scholar 

  • Nolan KE, Saeed NA, Rose RJ (2006) The stress kinase gene MtSK1 in Medicago truncatula with particular reference to somatic embryogenesis. Plant Cell Rep 25:711–722

    Article  CAS  PubMed  Google Scholar 

  • Ogas J, Kaufmann S, Henderson J, Somerville C (1999) PICKLE is a CHD3 chromatin-remodeling factor that regulates the transition from embryonic to vegetative development in Arabidopsis. Proc Natl Acad Sci U S A 96:13839–13844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oropeza C, Rillo E, Hocher V, Verdeil JL (2005) Coconut micropropagation. In: Batugal P, Rao VR, Oliver J (eds) Coconut genetic resources. IPGRI-APO, Serdang, pp 334–346

    Google Scholar 

  • Pannetier C, Buffard-Morel J (1982) Production of somatic embryos from leaf tissues of coconut, Cocos nucifera L. In: Fujiwara A (ed) Plant tissue culture 1982, proceedings of 5th international congress on plant tissue and cell culture. Marzuen, Tokyo, pp 755–756

    Google Scholar 

  • Perez-Grau L, Goldberg RB (1989) Soybean seed protein genes are regulated spatially during embryogenesis. Plant Cell 1:1095–1109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perez-Nunez MT, Chan JL, Saenz L, Gonzalez T, Verdeil JL, Oropeza C (2006) Improved somatic embryogenesis from Cocos nucifera L. plumule explants. In Vitro Cell Dev Biol Plant 42:37–43

    Article  Google Scholar 

  • Perez-Nunez MT, Souza R, Saenz L, Chan JL, Zuniga-Aguilar JJ, Oropeza C (2009) Detection of a SERK-like gene in coconut and analysis of its expression during the formation of embryogenic callus and somatic embryos. Plant Cell Rep 28:11–19

    Article  CAS  PubMed  Google Scholar 

  • Potocka I, Baldwin TC, Kurczynska EU (2012) Distribution of lipid transfer protein 1 (LTP1) epitopes associated with morphogenic events during somatic embryogenesis of Arabidopsis thaliana. Plant Cell Rep 31:2031–2045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poulsen GB, Frugis G, Albrechtsen M, Mariotti D (1996) Synthesis of extracellular proteins in embryogenic and non-embryogenic cell cultures of alfalfa. Plant Cell Tiss Org 44:257–260

    Article  CAS  Google Scholar 

  • Qin X, Gao F, Zhang J, Gao J, Lin S, Wang Y, Jiang L, Liao Y, Wang L, Jia Y, Tang L, Xu Y, Chen F (2011) Molecular cloning, characterization and expression of cDNA encoding translationally controlled tumor protein (TCTP) from Jatropha curcas L. Mol Biol Rep 38:3107–3112

    Article  CAS  PubMed  Google Scholar 

  • Rajesh MK, Radha E, Sajini KK, Karun A, Parthasarathy VA (2005) Plant regeneration through organogenesis and somatic embryogenesis from plumular explants of coconut (Cocos nucifera L.). J Plant Crops 33:9–17

    Google Scholar 

  • Rajesh MK, Rachana KE, Fayas TP, Merin B, Kiran AG, Anitha K (2014a) Selection and validation of reference genes for quantitative gene expression studies by real-time PCR in coconut. In: Muralidharan K, Rajesh MK, Muralikrishna KS, Jesmi V, Jayasekhar S (eds) Book of abstracts of national seminar on sustainability of coconut, arecanut and cocoa farming-technological advances and way forward. CPCRI, Kasaragod, p 34

    Google Scholar 

  • Rajesh MK, Radha E, Sajini KK, Karun A (2014b) Polyamine-induced somatic embryogenesis and plantlet regeneration in vitro from plumular explants of dwarf cultivars of coconut (Cocos nucifera L.). Ind J Agr Sci 84:527–530

    Google Scholar 

  • Reinert J (1959) The control of morphogenesis and induction of adventitious embryos in cell cultures of carrots. Planta 53:318–333

    Article  Google Scholar 

  • Rensing SA, Lang D, Schumann E, Reski R, Hohe A (2005) EST sequencing from embryogenic Cyclamen persicum cell cultures identifies a high proportion of transcripts homologous to plant genes involved in somatic embryogenesis. J Plant Growth Regul 24:102–115

    Article  CAS  Google Scholar 

  • Rumyantseva NI, Samaj J, Ensikat HJ, Salnikov VV, Kstyukova YA, Baluška F, Volkmann D (2003) Changes in the extracellular matrix surface network during cycling reproduction of proembryonic cell complexes in the Fagopyrum tataricum (L.) Gaertn callus. Dokl Biol Sci 391:375–378

    Article  CAS  PubMed  Google Scholar 

  • Sabala I, Elfstrand M, Farbos I, Clapham D, von Arnold S (2000) Tissue-specific expression of Pa18, a putative lipid transfer protein gene, during embryo development in Norway spruce (Picea abies). Plant Mol Biol 42:461–478

    Article  CAS  PubMed  Google Scholar 

  • Saenz L, Azpeitia A, Chuc-Armendariz B, Chan JL, Verdeil JL, Hocher V, Oropeza C (2006) Morphological and histological changes during somatic embryo formation from coconut plumule explants. In Vitro Cell Dev Biol Plant 42:19–25

    Article  Google Scholar 

  • Salvo SAGD, Hirsch CN, Buell CR, Kaeppler SM, Kaeppler HF (2014) Transcriptome profiling of maize during early somatic embryogenesis reveals altered expression of stress factors and embryogenesis-related genes. PLoS ONE 9, e111407

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Samaj J, Bobak M, Blehova A, Anna Pretova A (2005) Importance of cytoskeleton and cell wall in somatic embryogenesis. Plant Cell Monogr 2:5–50

    Google Scholar 

  • Santa-Catarina C, de Oliveira RR, Cutri L, Floh EIS, Dornelas MC (2012) WUSCHEL-related genes are expressed during somatic embryogenesis of the basal angiosperm Ocotea catharinensis Mez. (Lauraceae). Trees 26:493–501

    Article  CAS  Google Scholar 

  • Santanen A (2000) Polyamine metabolism during development of somatic and zygotic embryos of Picea abies (Norway spruce). PhD dissertation, Department of Biosciences, University of Helsinki

  • Schellenbaum P, Jacques A, Maillot P et al (2008) Characterization of VvSERK1, VvSERK2, VvSERK3 and VvL1L genes and their expression during somatic embryogenesis of grapevine (Vitis vinifera L.). Plant Cell Rep 27:1799–1809

    Article  CAS  PubMed  Google Scholar 

  • Schmidt EDL, Guzzo F, Toonen MAJ, Vries SC (1997) A leucine-rich repeat containing receptor-like kinase marks somatic plant cells competent to form embryos. Development 124:2049–2062

    CAS  PubMed  Google Scholar 

  • Schoof H, Lenhard M, Haecker A, Mayer KF, Jurgens G, Laux T (2000) The stem cell population of Arabidopsis shoot meristems inmaintained by a regulatory loop between the CLAVATA and WUSCHEL genes. Cell 100:635–644

    Article  CAS  PubMed  Google Scholar 

  • Smith AP, Nourizadeh SD, Peer WA, Xu J, Bandyopadhyay A, Murphy AS, Goldsbrough PB (2003) Arabidopsis AtGSTF2 is regulated by ethylene and auxin, and encodes a glutathione S-transferase that interacts with flavonoids. Plant J 36:433–442

    Article  CAS  PubMed  Google Scholar 

  • Solis-Ramos LY, Andrade-Torres A, Saenz LA, Oropeza CM, de la Serna EC (2012) Somatic embryogenesis in recalcitrant plants. In: Sato K (ed) Embryogenesis. Intech, Croatia, pp 597–618

    Google Scholar 

  • Sterk P, Booij H, Schellekens GA, van Kammen A, de Vries SC (1991) Cell-specific expression of the carrot EP2 lipid transfer protein gene. Plant Cell 3:907–921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sultan M, Schulz MH, Richard H, Magen A, Klingenhoff A, Scherf M et al (2008) A global view of gene activity and alternative splicing by deep sequencing of the human transcriptome. Science 321:956–60

    Article  CAS  PubMed  Google Scholar 

  • Suprasanna P, Desai NS, Nishanth G, Ghosh SB, Laxmi LN, Bapat VA (2004) Differential gene expression in embryogenic, nonembryogenic and desiccation induced cultures of sugarcane. Sugar Technol 6:305

    Article  CAS  Google Scholar 

  • Tchorbadjieva M (2005) Protein markers for somatic embryogenesis. In: Mujib A, Samaj J (eds) Somatic embryogenesis. Plant cell monograph vol. 2. Springer, Berlin, pp 215–233

    Google Scholar 

  • Tchorbadjieva M, Pantchev I, Harizanova N (2004) Two-dimensional protein pattern analysis of extracellular proteins secreted by embryogenic and nonembryogenic suspension cultures of Dactylis glomerata L. Biotechnol Biotechnol Equip 18:20–27

    Article  CAS  Google Scholar 

  • Tena G, Asai T, Chiu WL, Sheen J (2001) Plant mitogen-activated protein kinase signaling cascades. Curr Opin Plant Biol 4:392–400

    Article  CAS  PubMed  Google Scholar 

  • Thibaud-Nissen F, Shealy RT, Khanna A, Vodkin LO (2003) Clustering of microarray data reveals transcript patterns associated with somatic embryogenesis in soybean. Plant Physiol 132:118–136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verdeil JL, Buffard-Morel J (1995) Somatic embryogenesis in coconut (Cocos nucifera L). In: Bajaj YPS (ed) Somatic embryogenesis and synthetic seeds I, biotechnology in agriculture and forestry. Spring-Verlag, Berlin, pp 299–317

    Chapter  Google Scholar 

  • Verdeil JL, Huet C, Grosdemange F, Buffard-Morel J (1994) Plant regeneration from cultured immature inflorescences of coconut (Cocos nucifera L.): evidence for somatic embryogenesis. Plant Cell Rep 13:218–221

    CAS  PubMed  Google Scholar 

  • Wagner U, Edwards R, Dixon DP, Mauch F (2002) Probing the diversity of the Arabidopsis glutathione S-transferase gene family. Plant Mol Biol 49:515–532

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10:57–63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilson JW, Wilson PMW (1993) Mechanisms of auxin regulation of structural and physiological polarity in plants, tissues, cells and embryos. Aust J Pl Physiol 20:555–571

    Article  CAS  Google Scholar 

  • Yang X, Zhang X (2010) Regulation of somatic embryogenesis in higher plants. Cr Rev Plant Sci 29:36–57

    Article  CAS  Google Scholar 

  • Yang X, Zhang X, Yuan D, Jin F, Zhang Y, Xu J (2012) Transcript profiling reveals complex auxin signalling pathway and transcription regulation involved in dedifferentiation and redifferentiation during somatic embryogenesis in cotton. BMC Plant Biol 12:110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zagorchev L, Stoineva R, Odjakova M (2013) Changes in arabinogalactan proteins during somatic embryogenesis in suspension in vitro cultures of Dactylis glomerata L. Bulg J of Agric Sci 19:35–38

    Google Scholar 

  • Zdravkovic-Korac S, Neskovic M (1999) Induction and development of somatic embryos from spinach (Spinacia oleracea L.) leaf segments. Plant Cell Tiss Org Cult 55:109–114

    Article  Google Scholar 

  • Zhang S, Liu X, Lin Y, Xie G, Fu F, Liu H, Wang J, Gao S (2011) Characterization of a ZmSERK gene and its relationship to somatic embryogenesis in a maize culture. Plant Cell Tiss Org 105:29–37

    Article  CAS  Google Scholar 

  • Zhang L, Li W, Han S, Yang W, Qi L (2013) cDNA cloning, genomic organization and expression analysis during somatic embryogenesis of the translationally controlled tumor protein (TCTP) gene from Japanese larch (Larix leptolepis). Gene 529:150–158

    Article  CAS  PubMed  Google Scholar 

  • Zhao FY, Hu F, Zhang SY, Wang K, Zhang CR, Liu T (2013) MAPKs regulate root growth by influencing auxin signaling and cell cycle-related gene expression in cadmium-stressed rice. Environ Sci Pollut Res 20:5449–5460

    Article  CAS  Google Scholar 

  • Zhao C, Nie H, Shen Q, Zhang S, Lukowitz W, Tang D (2014) EDR1 Physically interacts with MKK4/MKK5 and negatively regulates a MAP kinase cascade to modulate plant innate immunity. PLoS Genet 10, e1004389

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zuo J, Niu QW, Frugis G, Chua NH (2002) The WUSCHEL gene promotes vegetative-to-embryonic transition in Arabidopsis. Plant J 30:349–359

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The work was supported by a grant from Indian Council of Agricultural Research (ICAR).

Conflict of interest

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. K. Rajesh.

Additional information

Handling Editor: Burkhard Becker

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Table 1

Transcripts from coconut embryogenic calli showing significant matches in the NCBI database (BLASTx) with similarity greater than 40 % and E value of ≤10–5 (XLS 9943 kb)

Supplementary Table 2

Coconut transcripts assigned to KEGG pathways (DOCX 22 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajesh, M.K., Fayas, T.P., Naganeeswaran, S. et al. De novo assembly and characterization of global transcriptome of coconut palm (Cocos nucifera L.) embryogenic calli using Illumina paired-end sequencing. Protoplasma 253, 913–928 (2016). https://doi.org/10.1007/s00709-015-0856-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-015-0856-8

Keywords

Navigation