Skip to main content
Log in

Reactive oxygen species regulate programmed cell death progress of endosperm in winter wheat (Triticum aestivum L.) under waterlogging

  • Original Article
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

Previous studies have proved that waterlogging stress accelerates the programmed cell death (PCD) progress of wheat endosperm cells. A highly waterlogging-tolerant wheat cultivar Hua 8 and a waterlogging susceptible wheat cultivar Hua 9 were treated with different waterlogging durations, and then, dynamic changes of reactive oxygen species (ROS), gene expressions, and activities of antioxidant enzymes in endosperm cells were detected. The accumulation of ROS increased considerably after 7 days of waterlogging treatment (7 DWT) and 12 DWT in both cultivars compared with control group (under non-waterlogged conditions), culminated at 12 DAF (days after flowering) and reduced hereafter. Waterlogging resulted in a great increase of H2O2 and O2 in plasma membranes, cell walls, mitochondrias, and intercellular spaces with ultracytochemical localization. Moreover, the deformation and rupture of cytomembranes as well as the swelling and distortion of mitochondria were obvious. Under waterlogging treatment conditions, catalase (CAT) gene expression increased in endosperm of Hua 8 but activity decreased. In addition, Mn superoxide dismutase (MnSOD) gene expression and superoxide dismutase (SOD) activity increased. Compared with Hua 8, both CAT, MnSOD gene expressions and CAT, SOD activities decreased in Hua 9. Moreover, ascorbic acid and mannitol relieve the intensifying of PCD processes in Hua 8 endosperm cells induced by waterlogging. These results indicate that ROS have important roles in the PCD of endosperm cells, the changes both CAT, MnSOD gene expressions and CAT, SOD activities directly affected the accumulation of ROS in two different wheat cultivars under waterlogging, ultimately led to the PCD acceleration of endosperm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

CAT:

Catalase

DAB:

3′,3′-Diaminobenzidine-HCl

DAF:

Days after flowering

DWT:

Days of waterlogging treatment

O2 :

Superoxide radical

PCD:

Programmed cell death

ROS:

Reactive oxygen species

SOD:

Superoxide dismutase

NBT:

Azide-insensitive nitroblue tetrazolium

References

  • Ameisen JC (2002) On the origin, evolution, and nature of programmed cell death: a timeline of four billion years. Cell Death Differ 9:367–393

    Article  CAS  PubMed  Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    Article  CAS  PubMed  Google Scholar 

  • Balk J, Leaver CJ (2011) The PETl-CMS mitochondrial mutation in sunflower is associated with premature programmed cell death and cytochrome c release. Plant Cell 13:1803–1818

    Article  Google Scholar 

  • Bartoli CG, Gomez F, Martinez DE, Guiamet JJ (2004) Mitochondria are themain target for oxidative damage in leaves of wheat (Triticum aestivum L.). J Exp Bot 55:1663–1669

    Article  CAS  PubMed  Google Scholar 

  • Bestwick CS, Brown IR, Bennett Mark HR, John W (1997) Mansfield localization of hydrogen peroxide accumulation during the hypersensitive reaction of lettuce cells to Pseudomonas syringae pv phaseolicola. Plant Cell 9:209–221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bienert GP, Møller ALB, Kristiansen KA, Schulz A, Møller IM (2007) Specific aquaporins facilitate the diffusion of hydrogen peroxide across membranes. J Biol Chem 282:1183–1192

    Article  CAS  PubMed  Google Scholar 

  • Blom CWPM (1999) Adaptations to flooding stress: from plant community to molecule. Plant Biol 1:261–273

    Article  CAS  Google Scholar 

  • Casolo V, Petrussa E, Krajnáková J, Macrì F, Vianello (2005) Involvement of the mitochondrial K(+)ATP channel in H2O2 or NO induced programmed death of soybean suspension cell cultures. J Exp Bot 56(13):997–1006

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Wang Y, Li JY, Jiang AL, Cheng YW, Zhang W (2009) Mitochondrial proteome during salt stress induced programmed cell death in rice. Plant Physiol Biochem 47:407–415

    Article  CAS  PubMed  Google Scholar 

  • Collaku A, Harrison SA (2002) Losses in wheat due to waterlogging. Crop Sci 42:444–450

    Article  Google Scholar 

  • Deng XY, Li JW, Zhou ZQ, Fan HY (2010) Cell death in wheat roots induced by the powdery mildew fungus Blumeria graminis f.sp. tritici. Plant Siol 328:45–55

    Article  CAS  Google Scholar 

  • Desagher S, Martino JC (2000) Mitochondria as the central control point of apoptosis. Trends Cell Biol 10:369–377

    Article  CAS  PubMed  Google Scholar 

  • Fan HY, Zhou ZQ, Yang CN, Jiang Z, Li JT, Cheng XX, Guo YJ (2013) Effects of waterlogging on amyloplasts and programmed cell death in endosperm cells of Triticum aestivum L. Protoplasma 250(5):1091–1103

    Article  CAS  PubMed  Google Scholar 

  • Fath A, Bethke PC, Jones RL (2001) Enzymes that scavenge reactive oxygen species are down-regulated prior to gibberellic acid-induced programmed cell death in barley aleurone. Plant Physiol 126:156–166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feissner RF, Skalska J, Gaum WE, Sheu SS (2009) Crosstalk signaling between mitochondrial Ca2+ and ROS. Front Biosci 14:1197–1218

    Article  CAS  Google Scholar 

  • Fryer MJ, Oxborough K, Mullneaux PM, Baker NR (2002) Imaging of photo oxidative stress responses in leaves. J Exp Bot 53:1249–1254

    Article  CAS  PubMed  Google Scholar 

  • Gaffal KP, Friedrichs GJ, El-Gammal S (2007) Ultrastructural evidence for a dual function of the phloem and programmed cell death in the floral nectary of Digitalis purpurea. J Ann Bot 99:593–607

    Article  Google Scholar 

  • Gechev TS, Breusegem FV, Stone JM, Denev I, Laloi C (2006) Reactive oxygen species as signals that modulate plant stress responses and programmed cell death. Bio Essays 28:1091–2001

    CAS  Google Scholar 

  • Halliwell B (2006) Reactive species and antioxidants. Redox biology is a fundamental theme of aerobic life. Plant Physiol 141:312–322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huckelhoven R, Fodor J, Trujillo M, Kogel KH (2000) Barley Mla and Rar mutants compromised in the hypersensitive cell death response against Blumeria graminis f. sp. hordei are modified in their ability to accumulate reactive oxygen intermediates at sites of fungal invasion. Planta 212:16–24

    Article  CAS  PubMed  Google Scholar 

  • Jiang Y, Huang B (2001) Effects of calcium on antioxidant activities and water relations associated with heat tolerance in two cool-season grasses. J Exp Bot 52:341–349

    Article  CAS  PubMed  Google Scholar 

  • Jones AM (2001) Programmed cell death in development and defense. Plant Physiol 125:94–97

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kovtun Y, Chiu WL, Tena G, Sheen J (2000) Functional analysis of oxidative stress-activated mitogen-activated protein kinase cascade in plants. Proc Natl Acad Sci U S A 97:2940–2945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kristensen BK, Askerlund P, Bykova NV, Egsgaard H, Møller IM (2004) Identification of oxidised proteins in the matrix of rice leaf mitochondria by immunoprecipitation and two-dimensional liquid chromatography-tandem mass spectrometry. Phytochemistry 65:1839–1851

    Article  CAS  PubMed  Google Scholar 

  • LI R, Lan SY, Xu ZX (2004a) Programmed cell death in wheat during starchy endosperm development. J Plant Physiol Mol Biol 30(2):183–188

    Google Scholar 

  • LI R, Lan SY, Xu ZX (2004b) Studies on the programmed cell death in rice during starchy endosperm development. Sci Agric Sin 3(9):663–670

    Google Scholar 

  • Lombardi L, Ceccarelli N, Picciarelli P, Sorce C, Lorenzi R (2010) Nitric oxide and hydrogen peroxide involvement during programmed cell death of Sechium edule nucellus. Physiol Plant 140(1):89–102

    Article  CAS  PubMed  Google Scholar 

  • Miller AF (2004) Superoxide dismutases: active sites that save, but a protein that kills. Curr Opin Chem Biol 8:162–168

    Article  CAS  PubMed  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410

    Article  CAS  PubMed  Google Scholar 

  • Møller IM, Jensen PE, Hansson A (2007) Oxidative modifications to cellular components in plants. Plant Biol 58:459–481

    Article  Google Scholar 

  • Nguyen AT, Donaldson RP (2005) Metal-catalyzed oxidation induces carbonylation of peroxisomal proteins and loss of enzymatic activities. Arch Biochem Biophys 439:25–31

    Article  CAS  PubMed  Google Scholar 

  • Pantelis L, Basil G, Panagiotis A (2014) The interplay between ROS and tubulin cytoskeleton in Plants. Plant Signal Behav 9:e28069

    Article  Google Scholar 

  • Pastori GM, Del Río LA (1997) Natural senescenee of pea leaves. An activated oxygen-mediated function for peroxisomes. Plant Physiol 113:411–418

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pulido P, Cazalis R, Cejudo FJ (2009) An antioxidant redox system in the nucleus of weat seed cells suffering oxidative stress. The Plant J 57:132-145

  • Romero Puertas MC, Rodriguez-Serrano M, Corpas FJ, Gómez M, Del Río LA, Sandalio LM (2004) Cadmium induced subcellular accumulation of O2 and H2O2 in pea leaves. Plant Cell Environ 27:1122–1134

    Article  CAS  Google Scholar 

  • Sairam RK, Srivastava GC, Saxena DC (2000) Increased antioxidant activity under elevated temperature: a mechanism of heat stress tolerance in wheat genotypes. Biol Plant 43:245–251

    Article  CAS  Google Scholar 

  • Smirnoff N (2005) Antioxidants and reactive oxygen species in plants. Blackwell, Oxford, pp 169–177

    Book  Google Scholar 

  • Steinbeck MJ, Khan AU, Appel WH, Karnovsky MJ (1993) The DAB-Mn++ cytochemical method revisited: validation of specificity for superoxide. J Histo Chem Cytochem 41:1659–1667

    Article  CAS  Google Scholar 

  • Vacca RA, Valenti D, Bobba A, Merafina RS, Passarella S, Marra E (2006) Cytochrome c is released in a reactive oxygen species dependent manner and is degraded via caspase-like proteases in tobacco Bright-Yellow 2 cells en route to heat shock induced cell death. Plant Physiol 141:208–219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Voesenek LACJ, Colmer TD, Pierik R, Millenaar FF, Peeters AJM (2006) How plants cope with complete submergence. New Phytol 170:213–226

    Article  CAS  PubMed  Google Scholar 

  • Wang CF, Huang LL, Zhang HC, Han QM, Buchenauer H, Kang ZS (2010) Cytochemical localization of reactive oxygen species (O2 and H2O2) and peroxidase in the incompatible and compatible interaction of wheat-Puccinia striiformis f. sp. tritici. Physiol Mol Plant Pathol 74:221–229

    Article  CAS  Google Scholar 

  • Willekens H, Chamnongpol S, Davey M (1997) Catalase is a sink for H2O2 and is indispensable for stress defense in C3 plants. EMBO J 16:4806–4816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wiseman H, Halliwell B (1996) Damage to DNA by reactive oxygen and nitrogen species: role in inflammatory disease and progression to cancer. Biochemistry 313:17–29

    Article  CAS  Google Scholar 

  • Xu SB, Yu HT, Yan LF, Wang T (2010) Integrated proteomic and cytological study of rice endosperms at the storage phase. J Proteome Res 9:4906–4918

    Article  CAS  PubMed  Google Scholar 

  • Yao N, Eisfelder BJ, Marvin J, Greenberg JT (2004) The mitochondrion an organelle commonly involved in programmed cell death in Arabidopsis thaliana. Plant J 40:596–610

    Article  CAS  PubMed  Google Scholar 

  • Young TE, Gallie DR (1999) Analysis of programmed cell death in wheat endosperm reveals differences in endosperm development between cereals. Plant Mol Bio 39:915–926

    Article  CAS  Google Scholar 

  • Young TE, Gallie DR, DeMason DA (1997) Ethylene-mediated programmed cell death during maize endosperm development of wild-type and shrunken2 genotypes. Plant Physiol 115:737–747

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang XQ, Wu KL, Xue DW (2009) Effects of waterlogging stress on antioxidative enzyme system in different barley genotypes. J Zhejiang Univ (Agric Life Sci) 35(3):315–320

    CAS  Google Scholar 

  • Zheng CF, Jiang D, Liu FL, Dai T, Jing Q, Cao WX (2009) Effects of salt and waterlogging stresses and their combination on leaf photosynthesis, chloroplast ATP synthesis, and antioxidant capacity in wheat. Plant Sci 176:575–582

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Foundation of China (Grant Nos. 31171469 and 31471428).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhu-Qing Zhou.

Additional information

Handling Editor: Liwen Jiang

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, XX., Yu, M., Zhang, N. et al. Reactive oxygen species regulate programmed cell death progress of endosperm in winter wheat (Triticum aestivum L.) under waterlogging. Protoplasma 253, 311–327 (2016). https://doi.org/10.1007/s00709-015-0811-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-015-0811-8

Keywords

Navigation