Skip to main content
Log in

Overexpression of AT14A confers tolerance to drought stress-induced oxidative damage in suspension cultured cells of Arabidopsis thaliana

  • Original Article
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

Drought stress can affect interaction between plant cell plasma membrane and cell wall. Arabidopsis AT14A, an integrin-like protein, mediates the cell wall-plasma membrane-cytoskeleton continuum (WMC continuum). To gain further insight into the function of AT14A, the role of AT14A in response to drought stress simulated by polyethylene glycol (PEG-6000) in Arabidopsis suspension cultures was investigated. The expression of this gene was induced by PEG-6000 resulting from reverse transcription-PCR, which was further confirmed by the expression data from publically available microarray datasets. Compared to the wild-type cells, overexpression of AT14A (AT14A-OE) in Arabidopsis cultures exhibited a greater ability to adapt to water deficit, as evidenced by higher biomass accumulation and cell survival rate. Furthermore, AT14A-OE cells showed a higher tolerance to PEG-induced oxidative damage, as reflected by less H2O2 content, lipid peroxidation (malondialdehyde (MDA) content), and ion leakage, which was further verified by maintaining high levels of activities of antioxidant defense enzymes such as ascorbate peroxidase and guaiacol peroxidase and soluble protein. Taken together, our results suggest that overexpression of AT14A improves drought stress tolerance and that AT14A is involved in suppressing oxidative damage under drought stress in part via regulation of antioxidant enzyme activities

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126

    Article  CAS  PubMed  Google Scholar 

  • Baluška F, Šamaj J, Wojtaszek P, Volkmann D, Menzel D (2003) Cytoskeleton-plasma membrane-cell wall continuum in plants. Emerging links revisited. Plant Physiol 133:482–491

    Article  PubMed Central  PubMed  Google Scholar 

  • Ban Q, Liu G, Wang Y (2011) A DREB gene from Limonium bicolor mediates molecular and physiological responses to copper stress in transgenic tobacco. J Plant Physiol 168:449–458

    Article  CAS  PubMed  Google Scholar 

  • Beauchamp C, Fridovich I (1971) Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem 44:276–287

    Article  CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Davies KJA (1987) Protein damage and degradation by oxygen radicals. I. General aspects. J Biol Chem 262:9895–9901

    CAS  PubMed  Google Scholar 

  • De Campos MKF, Carvalho K, Souza FS, Marur CJ, Pereira LFP, Bespalhok Filho JC, Vieira LGE (2011) Drought tolerance and antioxidant enzymatic activity in transgenic ‘Swingle’ citrumelo plants over-accumulating proline. Environ Exp Bot 72:242–250

    Article  Google Scholar 

  • Hernández JA, Almansa MS (2002) Short-term effects of salt stress on antioxidant systems and leaf water relations of pea leaves. Physiol Plant 115:251–257

    Article  PubMed  Google Scholar 

  • Hynes RO (2002) Integrins: bidirectional, allosteric signaling machines. Cell 110:673–687

    Article  CAS  PubMed  Google Scholar 

  • Ikegawa H, Yamamoto Y, Matsumoto H (1998) Cell death caused by a combination of aluminum and iron in cultured tobacco cells. Physiol Plant 104:474–478

    Article  CAS  Google Scholar 

  • Islam MM, Hoque MA, Okuma E, Banu MNA, Shimoishi Y, Nakamura Y, Murata Y (2009) Exogenous proline and glycinebetaine increase antioxidant enzyme activities and confer tolerance to cadmium stress in cultured tobacco cells. J Plant Physiol 166:1587–1597

  • Jiang MY, Zhang JH (2001) Effect of abscisic acid on active oxygen species, antioxidative defence system and oxidative damage in leaves of maize seedlings. Plant Cell Physiol 42:1265–1273

    Article  CAS  PubMed  Google Scholar 

  • Knepper C, Savory EA, Day B (2011) Arabidopsis NDR1 is an integrin-like protein with a role in fluid loss and plasma membrane-cell wall adhesion. Plant Physiol 156:286–300

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kovalchuk I, Molinier J, Yao Y, Arkhipov A, Kovalchuk O (2007) Transcriptome analysis reveals fundamental differences in plant response to acute and chronic exposure to ionizing radiation. Mutat Res 624:101–113

    Article  CAS  PubMed  Google Scholar 

  • Kumamoto CA (2008) Molecular mechanisms of mechanosensing and their roles in fungal contact sensing. Nat Rev Microbiol 6:667–673

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Li W, Wang D, Jin T, Chang Q, Yin D, Xu S, Liu B, Liu L (2011) The vacuolar Na+/H+ antiporter gene SsNHX1from the halophyte Salsola soda confers salt tolerance in transgenic alfalfa (Medicago sativa L.). Plant Mol Biol Report 29:278–290

    Article  CAS  Google Scholar 

  • Lü B, Chen F, Gong ZH, Xie H, Liang JS (2007a) Integrin-like protein is involved in the osmotic stress-induced abscisic acid biosynthesis in Arabidopsis thaliana. J Integr Plant Biol 49:540–549

    Article  Google Scholar 

  • Lü B, Chen F, Gong ZH, Xie H, Zhang JH, Liang JS (2007b) Intracellular localization of integrin-like protein and its roles in osmotic stress-induced ABA biosynthesis in Zea mays. Protoplasma 232:35–43

    Article  PubMed  Google Scholar 

  • Lü B, Wang J, Zhang Y, Wang H, Liang J, Zhang J (2012) AT14A mediates the cell wall-plasma membrane-cytoskeleton continuum in Arabidopsis thaliana cells. J Exp Bot 63:4061–4069

    Article  PubMed Central  PubMed  Google Scholar 

  • Mafakheri A, Siosemardeh A, Bahramnejad B, Struik PC, Sohrabi Y (2011) Effect of drought stress and subsequent recovery on protein, carbohydrate contents, catalase and peroxidase activities in three chickpea (Cicer arietinum) cultivars. Aust J Crop Sci 5:1255–1260

    CAS  Google Scholar 

  • Marshall A, Aalen RB, Audenaert D, Beeckman T, Broadley MR, Butenko MA, Caño-Delgado AI, de Vries S, Dresselhaus T, Felix G (2012) Tackling drought stress: receptor-like kinases present new approaches. Plant Cell 24:2262–2278

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mittler R (2002) Oxidative stress antioxideants and stress tolerance. Trends Plant Sci 7:405–410

    Article  CAS  PubMed  Google Scholar 

  • Nagpal P, Quatrano RS (1999) Isolation and characterization of a cDNA clone from Arabidopsis thaliana with partial sequence similarity to integrins. Gene 230:33–40

    Article  CAS  PubMed  Google Scholar 

  • Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867–880

    CAS  Google Scholar 

  • Nick P (2013) Microtubules, signalling and abiotic stress. Plant J 75:309–323

    Article  CAS  PubMed  Google Scholar 

  • Nickel RS, Cunningham BA (1969) Improved peroxidase assay method using leuco-2,3′,6- trichloroindophenol and application to comparative measurements of peroxidase catalysis. Anal Biochem 27:292–299

    Article  CAS  PubMed  Google Scholar 

  • Pandey P, Srivastava RK, Dubey RS (2014) Water deficit and aluminum tolerance are associated with a high antioxidative enzyme capacity in Indica rice seedlings. Protoplasma 251:147–160

    Article  CAS  PubMed  Google Scholar 

  • Parvaiz A, Satyawati S (2008) Salt stress and phyto-biochemical responses of plants—a review. Plant Soil Environ 54:89–99

    CAS  Google Scholar 

  • Patterson BD, Mackae EA, Mackae I (1984) Estimation of hydrogen peroxide in plants extracts using titanium (ıv). Anal Biochem 139:487–492

    Article  CAS  PubMed  Google Scholar 

  • Pyngrope S, Bhoomika K, Dubey RS (2013) Reactive oxygen species, ascorbate–glutathione pool, and enzymes of their metabolism in drought-sensitive and tolerant indica rice (Oryza sativa L.) seedlings subjected to progressing levels of water deficit. Protoplasma 250:585–600

    Article  CAS  PubMed  Google Scholar 

  • Schindler M, Meiners S, Cheresh DA (1989) RGD-dependent linkage between plant cell wall and plasma membrane: consequences for growth. J Cell Biol 108:1955–1965

    Article  CAS  PubMed  Google Scholar 

  • Vecchione C, Carnevale D, Pardo AD, Gentile MT, Damato A, Cocozza G, Antenucci G, Mascio G, Bettarini U, Landolfi A, Iorio L, Maffei A, Lembo G (2009) Pressure-induced vascular oxidative stress is mediated through activation of integrin-linked kinase 1/betaPIX/Rac-1 pathway. Hypertension 54:1028–1034

    Article  CAS  PubMed  Google Scholar 

  • Vom DS, Schliess F, Reissmann R, Gorg B, Weiergraber O, Kocalkova M, Dombrowski F, Haussinger D (2003) Involvement of integrins in osmosensing and signaling toward autophagic proteolysis in rat liver. J Biol Chem 278:27088–27095

    Article  Google Scholar 

  • Wang TZ, Xia XZ, Zhao MG, Tian QY, Zhang WH (2013a) Expression of a Medicago falcata small GTPase gene, MfARL1 enhanced tolerance to salt stress in Arabidopsis thaliana. Plant Physiol Biochem 63:227–235

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Kroon JKM, Slabas AR, Chivasa S (2013b) Proteomics reveals new insights into the role of light in cadmium response in Arabidopsis cell suspension cultures. Proteomics 13:1145–1158

    Article  CAS  PubMed  Google Scholar 

  • Winter D, Vinegar B, Nahal H, Ammar R, Wilson GV, Provart NJ (2007) An “electronic fluorescent pictograph” browser for exploring and analyzing large-scale biological data sets. PLoS One 2:e718. doi:10.1371/journal.pone.0000718

    Article  PubMed Central  PubMed  Google Scholar 

  • Yu M, Shen R, Xiao H, Xu M, Wang H, Wang H, Zeng Q, Bian J (2009) Boron alleviates aluminum toxicity in pea (Pisum sativum). Plant Soil 314:87–98

    Article  CAS  Google Scholar 

  • Zhao LQ, Zhang F, Guo JK, Yang YL, Li BB, Zhang LX (2004) Nitric oxide functions as a signal in salt resistance in the calluses from two ecotypes of reed. Plant Physiol 134:849–857

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhao L, He J, Wang X, Zhang L (2008) Nitric oxide protects against polyethylene glycol-induced oxidative damage in two ecotypes of reed suspension cultures. J Plant Physiol 165:182–191

    Article  CAS  PubMed  Google Scholar 

  • Zhu JK (2002) Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 53:247–273

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zimmermann P, Hirsch-Hoffmann M, Hennig L, Gruissem W (2004) GENEVESTIGATOR: Arabidopsis microarray database and analysis toolbox. Plant Physiol 136:2621–2632

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. 31101092; 31271622; 30800073), Natural Science Foundation of the Higher Education Institutions of Jiangsu Province (Grant No.12KJD180008), Science and Technology Innovation Development Foundation of Yangzhou University (Grant No. 2013CXJ072), and the Priority Academic Program Development of Jiangsu Higher Education Institutions

Conflict of interests

The authors declare that there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. S. Liang.

Additional information

Handling Editor: Bhumi Nath Tripathi

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

Expression profiles of AT14A induced by drought stress. Data was compiled from microarray data available using GENEVESTIGATOR tools (https://www.genevestigator.com/gv/plant.jsp). (A) Experiment ID AT-00560. (B) Experiment ID AT-00626. (3) Experiment ID AT-00657. (GIF 52 kb)

High resolution image (TIFF 993 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., He, J., Ding, H. et al. Overexpression of AT14A confers tolerance to drought stress-induced oxidative damage in suspension cultured cells of Arabidopsis thaliana . Protoplasma 252, 1111–1120 (2015). https://doi.org/10.1007/s00709-014-0744-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-014-0744-7

Keywords

Navigation